首页 > Python资料 博客日记
【python绘图(一)】Python数据分析和可视化
2024-03-24 17:00:03Python资料围观189次
1. 绘制三维曲面图及其投影图
2. 绘制曲面图
3. 绘制曲面投影图
4. 同时绘制曲面图和投影图,用两个图展示
5. 绘制曲面图
6. 同时绘制曲面图及其二维填色图
数据分析包括探索、清理和转换数据以从中提取有用信息。Python有许多库可以使数据分析变得更容易,例如Pandas、NumPy和SciPy。以下是使用Python进行数据分析的基本步骤:
-
加载数据:您可以使用Pandas从各种来源加载数据,例如CSV、Excel文件、SQL数据库或API。
-
探索数据:使用Pandas查看数据及其结构。您可以检查空值、数据类型和摘要统计信息。此步骤有助于更好地了解数据并识别任何问题。
-
清理数据:您可以使用Pandas处理缺失值、重复值、异常值和不正确的数据。在分析数据之前,数据清理是必不可少的步骤。
-
转换数据:Pandas提供了一些转换数据的工具,包括筛选、分组、合并和透视。此步骤有助于为分析数据做准备。
-
分析数据:您可以使用Python库,例如NumPy、SciPy和Pandas进行各种类型的分析,包括统计分析、机器学习和数据建模。
可视化是传达数据洞察力和模式的强大工具。Python有许多数据可视化库,包括Matplotlib、Seaborn和Plotly。以下是使用Python创建可视化的基本步骤:
-
加载数据:您可以像上面描述的那样加载数据。
-
选择可视化:选择适当的可视化方式,例如散点图、条形图、热图等。
-
创建可视化:使用所选库创建可视化,包括选择数据、定义图表类型和自定义图表外观。
-
自定义可视化:您可以自定义图表的各种特征,包括轴标签、标题、颜色和注释。
-
保存或显示可视化:一旦您创建和自定义了可视化,可以将其保存到文件或在Jupyter笔记本或其他Python环境中显示。
使用Python进行数据分析和可视化是一个广阔的领域,这仅仅是一个概述。
1. 绘制三维曲面图及其等高线投影图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# 创建三维图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 生成数据
x = np.arange(-5, 5, 0.25)
y = np.arange(-5, 5, 0.25)
x, y = np.meshgrid(x, y)
r = np.sqrt(x ** 2 + y ** 2)
z = np.sin(r)
# 绘制曲面图
ax.plot_surface(x, y, z, cmap='viridis')
# 绘制投影图
ax.contourf(x, y, z, zdir='z', offset=-15, cmap='viridis')
# 调整Z方向距离
ax.set_zlim(-15, 3)
# 显示图形
plt.show()
这是一个使用matplotlib
库创建3D图形的Python代码,包括曲面图和等高线投影图。
代码的第一部分导入必要的库并设置3D图形。第二部分生成数据,该数据是x
和y
的函数,并使用numpy
库计算相应的z
值。第三部分使用ax.plot_surface()
函数绘制曲面图和ax.contourf()
函数绘制等高线投影图。cmap
参数指定用于绘图的颜色映射。
ax.set_zlim()
函数用于调整Z轴限制,并使用plt.show()
函数显示图形。
总体而言,该代码创建了一个3D图形,其中包括曲面图和等高线投影图,使用颜色映射来显示函数在z
方向上的变化。
2. 绘制曲面图
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
# 创建三维图形
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 生成数据
x = np.arange(5)
y = np.arange(5)
x, y = np.meshgrid(x, y)
z = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
# 绘制曲面图
ax.plot_surface(x, y, z)
# 设置坐标轴标签
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
# 显示图形
plt.show()
3. 加载三列数据文件,绘制曲面投影图
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
# 加载数据
data = np.loadtxt('fes.dat')
x = data[:, 0]
y = data[:, 1]
z = data[:, 2]*4.3597*6.022*100
# 定义网格
xi = np.linspace(min(x), max(x), 100)
yi = np.linspace(min(y), max(y), 100)
X, Y = np.meshgrid(xi, yi)
# 插值数据到网格上
Z = griddata((x, y), z, (X, Y), method='cubic')
# 绘制投影图
plt.imshow(Z, cmap='viridis', extent=[min(xi), max(xi), min(yi), max(yi)], origin='lower')
# 添加标签和标题
plt.xlabel('X')
plt.ylabel('Y')
plt.title('等高线投影图')
# 添加色标
plt.colorbar()
# 显示图形
plt.show()
4. 加载三列数据文件,同时绘制曲面图和投影图,用两个图展示
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from mpl_toolkits.mplot3d import Axes3D
# 加载数据
data = np.loadtxt('fes.dat')
x = data[:, 0]
y = data[:, 1]
z = data[:, 2]*4.3597*6.022*100
# 定义网格
xi = np.linspace(min(x), max(x), 100)
yi = np.linspace(min(y), max(y), 100)
X, Y = np.meshgrid(xi, yi)
# 插值数据到网格上
Z = griddata((x, y), z, (X, Y), method='cubic')
# 绘制投影图
fig = plt.figure(figsize=(10, 5))
ax1 = fig.add_subplot(1, 2, 1)
im = ax1.imshow(Z, cmap='viridis', extent=[min(xi), max(xi), min(yi), max(yi)], origin='lower')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_title('等高线投影图')
fig.colorbar(im, ax=ax1)
# 绘制曲面图
ax2 = fig.add_subplot(1, 2, 2, projection='3d')
ax2.plot_surface(X, Y, Z, cmap='viridis')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_zlabel('Z')
ax2.set_title('3D曲面图')
# 显示图形
plt.show()
5. 加载三列数据文件,绘制曲面图
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 加载数据
data = np.loadtxt('fes.dat')
x = data[:, 0]
y = data[:, 1]
z = data[:, 2]*4.3597*6.022*100
# 创建3D坐标轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 绘制曲面
ax.plot_trisurf(x, y, z, cmap='viridis')
# 添加标签和标题
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('曲面图')
# 显示图形
plt.show()
6. 在同一张图中绘制曲面图及其二维填色图
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.interpolate import griddata
# 设置 DPI,图像清晰度
# 通常在 100 到 300 DPI 之间选择一个合适的值即可。如果需要更高的分辨率,可以考虑使用矢量格式的图像,如 PDF、SVG 等,它们不受 DPI 的限制,可以随意缩放而不会失去清晰度。
plt.rcParams['figure.dpi'] = 600
# 加载数据
data = np.loadtxt('fes.dat')
x = data[:, 0]
y = data[:, 1]
z = data[:, 2]*4.3597*6.022*100
# 创建3D坐标轴
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# 绘制曲面
ax.plot_trisurf(x, y, z, cmap='viridis')
# 添加标签和标题
ax.set_xlabel('Ti-B coordination number')
ax.set_ylabel('Ti-Al coordination number')
ax.set_zlabel('Energy (kJ/mol)')
ax.set_title('3-dimension contour and surface plot')
# 定义网格
xi = np.linspace(min(x), max(x)+0.5, 500)
yi = np.linspace(min(y)-0.5, max(y), 500)
X, Y = np.meshgrid(xi, yi)
# 设置纵轴坐标刻度范围
# ax.set_zlim(-30, 0)
# 插值数据到网格上
Z = griddata((x, y), z, (X, Y), method='linear')
# 绘制投影图
contour = ax.contourf(X, Y, Z, cmap='viridis', levels=40, offset=-25)
# fig.colorbar(contour)
# 添加colorbar
# fig.add_axes() 方法用于在图形中添加新的坐标轴对象,参数指定了新坐标轴的位置和大小。这个方法接受一个参数列表 [left, bottom, width, height],这里的 left 表示新坐标轴的左边缘位置, bottom 表示下边缘位置, width 表示坐标轴的宽度, height 表示坐标轴的高度。
cbar_ax = fig.add_axes([0.88, 0.10, 0.02, 0.7])
fig.colorbar(contour, cax=cbar_ax)
# 设置图片大小
# fig.set_size_inches(10, 6)
# 显示图形
plt.show()
这个脚本从名为'fes.dat'的文件中加载数据,文件包含三列数据:第一列和第二列对应于二维平面上的x和y坐标,第三列对应于每个点的值z。脚本然后使用matplotlib将数据绘制成3D曲面,添加轴标签和标题,并使用scipy将数据插值到网格上。最后,它创建一个二维等高线图,将插值数据投影到x-y平面上,并显示整个图形。
以下是脚本的详细说明:
- 导入必要的库:numpy、matplotlib、mpl_toolkits.mplot3d和scipy.interpolate。
- 使用numpy.loadtxt从文件'fes.dat'中加载数据,并将x、y和z数据提取到单独的数组中。
- 创建一个新的图形并添加一个3D轴,使用matplotlib.pyplot.figure和matplotlib.pyplot.subplot。
- 使用mpl_toolkits.mplot3d.Axes3D.plot_trisurf将原始数据绘制成3D曲面。
- 使用mpl_toolkits.mplot3d.Axes3D.set_xlabel、mpl_toolkits.mplot3d.Axes3D.set_ylabel、mpl_toolkits.mplot3d.Axes3D.set_zlabel和mpl_toolkits.mplot3d.Axes3D.set_title将轴标签和标题添加到绘图中。
- 使用numpy.linspace和numpy.meshgrid定义一个新的x-y点网格。
- 使用scipy.interpolate.griddata将原始数据插值到新网格上。
- 使用mpl_toolkits.mplot3d.Axes3D.contourf创建插值数据的二维等高线图。
- 使用matplotlib.pyplot.show显示整个图形。
注意,# fig.colorbar(contour)
行被注释掉了。如果取消注释这行代码,它会向图中添加一个颜色条,显示颜色和z值之间的对应关系。
参考资料
- Matplotlib Official Website: Tutorials — Matplotlib 3.7.0 documentation
- Seaborn Official Website: User guide and tutorial — seaborn 0.12.2 documentation
- Plotly Official Website: https://plotly.com/python/
- DataCamp: https://www.datacamp.com/
- Udacity: Learn the Latest Tech Skills; Advance Your Career | Udacity
- Coursera: https://www.coursera.org/
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj