首页 > Python资料 博客日记
一种解决高版本python无法加载sklearn内置的波士顿房价数据的方法
2024-05-25 09:00:04Python资料围观237次
Python资料网推荐一种解决高版本python无法加载sklearn内置的波士顿房价数据的方法这篇文章给大家,欢迎收藏Python资料网享受知识的乐趣
本人用的是python3.11,在机器学习项目实战时,无法通过传统的方式加载sklearn内置的波士顿房价数据。
原代码如下:
# 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 加载波士顿房屋数据集
boston = load_boston()
# 数据准备
X = boston.data
y = boston.target
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建线性回归模型实例
model = LinearRegression()
# 模型训练
model.fit(X_train, y_train)
# 模型预测
y_pred = model.predict(X_test)
# 计算均方误差
mse = np.mean((y_pred - y_test) ** 2)
print("均方误差:", mse)
# 结果可视化
plt.scatter(y_test, y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
plt.xlabel('actual_price')
plt.ylabel('predict_price')
plt.title('liner')
plt.show()
运行这个代码会出现错误:
Traceback (most recent call last):
File "\line_regression.py", line 5, in <module>
from sklearn.datasets import load_boston
File "sklearn\datasets\__init__.py", line 157, in __getattr__
raise ImportError(msg)
ImportError:
`load_boston` has been removed from scikit-learn since version 1.2.
该错误说明高版本不再适用传统形式加载这个数据集。
对加载波士顿房屋数据集模块进行修改,修改代码如下:
# 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 加载波士顿房屋数据集
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
# 数据准备
X = data
y = target
# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建线性回归模型实例
model = LinearRegression()
# 模型训练
model.fit(X_train, y_train)
# 模型预测
y_pred = model.predict(X_test)
# 计算均方误差
mse = np.mean((y_pred - y_test) ** 2)
print("均方误差:", mse)
# 结果可视化
plt.scatter(y_test, y_pred)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=2)
plt.xlabel('actual_price')
plt.ylabel('predict_price')
plt.title('liner')
plt.show()
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程