首页 > Python资料 博客日记
Python——一文详解使用yolov5进行目标检测全流程(无需gpu)
2024-06-01 04:00:04Python资料围观135次
文章Python——一文详解使用yolov5进行目标检测全流程(无需gpu)分享给大家,欢迎收藏Python资料网,专注分享技术知识
本文按步骤详细介绍了使用yolov5进行目标检测的全流程,包括:模型下载、环境配置、数据集准备和数据预处理、模型调整、模型训练、进行目标检测和检测结果分析。本文全部流程使用cpu完成(无需gpu),旨在跑通流程,模型训练过程较慢,且未能到达最优结果。需要 python版本>=3.8。
本文使用的目标检测遥感数据集,已处理为适用yolov5的格式。
1. 模型下载
在github上进行模型下载:https://github.com/ultralytics/yolov5
2. 配置环境
首先在pycharm中新建一个Project,我们取名叫deeplearn。将下上步中下载好的yolov5-master.zip解压在该目录中。
在Anaconda prompt中切换到 '.\deeplearn\yolov5-master' 目录下,执行下面的指令安装所有需要的包(此处建议用清华镜像安装,不然会很慢):
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt
安装完成显示successfully。
3.数据预处理和配置
需要将我们的训练数据处理成yolov5支持的形式,并配置相应目录。yolov5支持的标签为 txt 格式,yml格式标签转txt格式详见文章:
Python——详细解析目标检测xml格式标注转换为txt格式-CSDN博客
3.1 建立数据集目录
首先,数据目录结构如下:
我们将图片放在images文件夹中相应的训练/验证/测试文件夹下,标签放在labels文件夹中相应的文件夹下。
图片为 jpg 格式,标签为 txt 格式。一张图片对应一个txt标签文件。txt文件的每行标识了图片中的每个目标的类别和位置信息,详情如下:
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程