首页 > Python资料 博客日记
NumPy 通用函数(ufunc):高性能数组运算的利器
2024-06-05 22:30:02Python资料围观149次
这篇文章介绍了NumPy 通用函数(ufunc):高性能数组运算的利器,分享给大家做个参考,收藏Python资料网收获更多编程知识
NumPy 通用函数(ufunc)
简介
NumPy 通用函数(ufunc),代表“通用函数”,是一类用于对 ndarray
对象进行逐元素运算的高性能函数。ufunc 使 NumPy 能够在底层高效地利用 C 语言实现向量化操作,从而显著提高计算速度。
优势
ufunc 的主要优势体现在以下几个方面:
向量化操作: ufunc 可以对整个数组进行逐元素运算,避免了使用循环语句遍历每个元素的低效率操作。
广播机制: ufunc 支持广播机制,能够自动将不同形状的数组广播为相同形状,方便进行运算。
多种函数类型: ufunc 包含了丰富的数学运算、逻辑运算和比较运算等,涵盖了常见的数据处理需求。
灵活扩展: ufunc 支持自定义函数,可以根据需求创建新的 ufunc 来满足特定场景的运算需求。
基本概念
向量化: 将原本需要使用循环语句逐个处理元素的操作,改为对整个数组进行操作,称为向量化。
广播: 在 NumPy 中,运算符可以对不同形状的数组进行运算,规则是将数组广播为相同的形状,具体规则由数组的维度和 shape
属性决定。
示例
加法运算
使用循环:
import numpy as np
x = np.array([1, 2, 3, 4])
y = np.array([5, 6, 7, 8])
z = []
for i, j in zip(x, y):
z.append(i + j)
print(z)
使用 ufunc:
import numpy as np
x = np.array([1, 2, 3, 4])
y = np.array([5, 6, 7, 8])
z = np.add(x, y)
print(z)
解释:
- 在第一个示例中,使用
zip()
函数将x
和y
数组中的元素一一对应,并使用append()
函数将计算结果存储在z
列表中。 - 在第二个示例中,直接使用
np.add()
函数对x
和y
数组进行加法运算,并将结果存储在z
数组中。
ufunc 的优势在于,它可以避免使用循环语句,直接对整个数组进行操作,效率更高。
创建自定义 ufunc
NumPy 允许用户创建自定义的 ufunc,以满足特定场景的运算需求。
步骤如下:
- 定义要封装的运算函数:
- 函数应接收任意数量的 ndarray 数组作为输入参数。
- 函数应返回一个或多个 ndarray 数组作为输出结果。
- 使用
frompyfunc()
函数将自定义函数转换为 ufunc:frompyfunc()
函数接收以下参数:function
: 要转换的自定义函数。inputs
: 输入参数的数量。outputs
: 输出结果的数量。dtype
: 可选参数,指定输出数组的数据类型。
示例:创建自定义加法函数 myadd
:
import numpy as np
def myadd(x, y):
return x + y
myadd = np.frompyfunc(myadd, 2, 1)
print(myadd([1, 2, 3, 4], [5, 6, 7, 8]))
解释:
myadd
函数定义了自定义的加法运算逻辑。np.frompyfunc()
将myadd
函数转换为 ufunc,并指定其输入参数为 2 个,输出结果为 1 个。- 最后,调用
myadd
ufunc 对两个数组进行加法运算。
判断函数是否是 ufunc
可以使用 type()
函数检查函数的类型,如果结果为 numpy.ufunc
,则该函数是 ufunc。
import numpy as np
print(type(np.add))
练习
- 使用 ufunc 实现数组的平方和平方根运算。
- 创建自定义 ufunc,用于计算两个数组的元素之积并返回最大值。
- 比较使用 ufunc 和循环语句进行数组运算的性能差异。
解决方案
import numpy as np
import time
# 1. 使用 ufunc 实现数组的平方和平方根运算
x = np.random.rand(10000)
## 最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:`Let us Coding`,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程