首页 > Python资料 博客日记
ollama-python-Python快速部署Llama 3等大型语言模型最简单方法
2024-06-29 22:00:04Python资料围观292次
ollama介绍
在本地启动并运行大型语言模型。运行Llama 3、Phi 3、Mistral、Gemma和其他型号。
Llama 3
Meta Llama 3 是 Meta Inc. 开发的一系列最先进的模型,提供8B和70B参数大小(预训练或指令调整)。
Llama 3 指令调整模型针对对话/聊天用例进行了微调和优化,并且在常见基准测试中优于许多可用的开源聊天模型。
安装
pip install ollama
高性价比GPU资源:https://www.ucloud.cn/site/active/gpu.html?ytag=gpu_wenzhang_tongyong_shemei
用法
import ollamaresponse = ollama.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', },])print(response['message']['content'])
流式响应
可以通过设置stream=True、修改函数调用以返回 Python 生成器来启用响应流,其中每个部分都是流中的一个对象。
import ollama stream = ollama.chat( model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}], stream=True, ) for chunk in stream: print(chunk['message']['content'], end='', flush=True)
应用程序编程接口
Ollama Python 库的 API 是围绕Ollama REST API设计的
聊天
ollama.chat(model='llama2', messages=[{'role': 'user', 'content': 'Why is the sky blue?'}])
新增
ollama.generate(model='llama2', prompt='Why is the sky blue?')
列表
ollama.list()
展示
ollama.show('llama2')
创建
modelfile=''' FROM llama2 SYSTEM You are mario from super mario bros. ''' ollama.create(model='example', modelfile=modelfile)
复制
ollama.copy('llama2', 'user/llama2')
删除
ollama.delete('llama2') Pull ollama.pull('llama2') push ollama.push('user/llama2')
嵌入
ollama.embeddings(model='llama2', prompt='The sky is blue because of rayleigh scattering')
定制客户端
可以使用以下字段创建自定义客户端:
- host:要连接的 Ollama 主机
- timeout: 请求超时时间
from ollama import Client client = Client(host='http://localhost:11434') response = client.chat(model='llama2', messages=[ { 'role': 'user', 'content': 'Why is the sky blue?', }, ])
异步客户端
import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} response = await AsyncClient().chat(model='llama2', messages=[message]) asyncio.run(chat())
设置stream=True修改函数以返回 Python 异步生成器:
import asyncio from ollama import AsyncClient async def chat(): message = {'role': 'user', 'content': 'Why is the sky blue?'} async for part in await AsyncClient().chat(model='llama2', messages=[message], stream=True): print(part['message']['content'], end='', flush=True) asyncio.run(chat())
错误
如果请求返回错误状态或在流式传输时检测到错误,则会引发错误。
model = 'does-not-yet-exist'try: ollama.chat(model)except ollama.ResponseError as e: print('Error:', e.error)if e.status_code == 404: ollama.pull(model)
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj