首页 > Python资料 博客日记

绘制雷达图

2024-07-17 10:30:02Python资料围观134

这篇文章介绍了绘制雷达图,分享给大家做个参考,收藏Python资料网收获更多编程知识

1.导入数据库

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

2.导入数据

path=r'path'
data=pd.read_excel(path,sheet_name='雷达图',index_col=0)
data

展示数据:

290m 312m
62.6 54.5
45° 61.6 54.6
90° 63.0 54.5
135° 60.6 53.9
180° 63.2 54.8
225° 60.6 53.9
270° 63.4 54.5
315° 61.6 54.6
360° 62.6 54.5

3.图纸设置

plt.rcParams['savefig.dpi'] = 300 # 图片像素
plt.rcParams['figure.dpi'] = 120 # 分辨率
plt.rcParams['font.sans-serif']=['SimHei']   #显示中文
plt.rcParams['axes.unicode_minus']=False      #显示负号

4.划分角度

n=len(data.index)
theta=np.linspace(0,2*np.pi,n,endpoint=True) #获取8个方向的角度值

R1=data['290m']/data['290m'].min()
R2=data['312m']/data['312m'].min()

5.构造平滑曲线函数

x_new=np.linspace(theta[0],theta[8],100)

f=interpolate.interp1d(theta,R1,kind='slinear')
y_smooth=f(x_new)

f1=interpolate.interp1d(theta,R2,kind='slinear')
y_smooth1=f1(x_new)

6.设置不同方向

labels=list(['0','45°','90°','135°','180°','225°','270°','315°'])

7.绘图

fig,ax=plt.subplots(subplot_kw={'projection': 'polar'})
ax.plot(theta,R1,'o',color='blue',markersize=8,fillstyle='none',label='290m')
ax.plot(theta,R2,'D',color='orange',markersize=6,fillstyle='none',label='312m') 
ax.plot(x_new,y_smooth,color='blue')
ax.plot(x_new,y_smooth1,color='orange')

ax.set_rmin(0.95) #设置刻度范围最小值
ax.set_rmax(1.08) #设置刻度范围最大值
ax.set_rticks([]) #隐藏刻度标签
ax.set_xticklabels(labels,fontsize=8)
ax.set_theta_zero_location('N')  #设置0度正北方向
ax.set_theta_direction(-1) #设置逆时针方向绘图
ax.legend(loc=(0.82,0.92),ncol=1,fontsize=8) # 添加图例

输出结果:
image

完整代码
#(1)导入库
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

#(2)导入数据
path=r'path'
data=pd.read_excel(path,sheet_name='雷达图',index_col=0)

#(3)图纸设置
plt.rcParams['savefig.dpi'] = 300 # 图片像素
plt.rcParams['figure.dpi'] = 120 # 分辨率
plt.rcParams['font.sans-serif']=['SimHei']   #显示中文
plt.rcParams['axes.unicode_minus']=False      #显示负号

#(4)划分角度
n=len(data.index)
theta=np.linspace(0,2*np.pi,n,endpoint=True) #获取8个方向的角度值

R1=data['290m']/data['290m'].min()
R2=data['312m']/data['312m'].min()

#(5)构造平滑曲线函数
x_new=np.linspace(theta[0],theta[8],100)

f=interpolate.interp1d(theta,R1,kind='slinear')
y_smooth=f(x_new)

f1=interpolate.interp1d(theta,R2,kind='slinear')
y_smooth1=f1(x_new)

#(6)设置不同方向
labels=list(['0','45°','90°','135°','180°','225°','270°','315°'])

#(7)绘图
fig,ax=plt.subplots(subplot_kw={'projection': 'polar'})
ax.plot(theta,R1,'o',color='blue',markersize=8,fillstyle='none',label='290m')
ax.plot(theta,R2,'D',color='orange',markersize=6,fillstyle='none',label='312m') 
ax.plot(x_new,y_smooth,color='blue')
ax.plot(x_new,y_smooth1,color='orange')

ax.set_rmin(0.95) #设置刻度范围最小值
ax.set_rmax(1.08) #设置刻度范围最大值
ax.set_rticks([]) #隐藏刻度标签
ax.set_xticklabels(labels,fontsize=8)
ax.set_theta_zero_location('N')  #设置0度正北方向
ax.set_theta_direction(-1) #设置逆时针方向绘图
ax.legend(loc=(0.82,0.92),ncol=1,fontsize=8) # 添加图例

版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐