首页 > Python资料 博客日记
【Trick】conda指令安装yml文件中的python依赖
2024-07-27 12:00:05Python资料围观176次
本篇文章分享【Trick】conda指令安装yml文件中的python依赖,对你有帮助的话记得收藏一下,看Python资料网收获更多编程知识
安装python依赖通常使用【pip】或【conda】指令,pip主要用于txt文件,conda主要用于yml文件。以下将给出其使用方法
pip
首先,创建一个YAML文件,列出python依赖项。
dependencies:
- python=3.8
- numpy
- pandas
- matplotlib
然后,打开终端,运行pip指令(假设文件名为requirements,实际应用时下列指令应该根据文件名进行修改)。
对于yml:
pip install -r requirements.yml
对于txt:
pip install -r requirements.txt
后续只需等待即可。
conda
首先,创建一个YAML文件,列出python依赖项。
channels:
- defaults
dependencies:
- python=3.8
- numpy
- pandas
- matplotlib
然后,打开终端,运行conda指令(假设文件名为requirements,实际应用时下列指令应该根据文件名进行修改)。
对于yml:
conda env create -f requirements.yml
后续只需等待即可。
实际案例
yml文件内容如下:
name: con_110
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _openmp_mutex=4.5=1_gnu
- backcall=0.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- bzip2=1.0.8=h7b6447c_0
- ca-certificates=2022.07.19=h06a4308_0
- certifi=2022.9.24=py37h06a4308_0
- cudatoolkit=11.3.1=h2bc3f7f_2
- debugpy=1.5.1=py37h295c915_0
- decorator=5.1.1=pyhd3eb1b0_0
- entrypoints=0.4=py37h06a4308_0
- faiss-gpu=1.7.2=py3.7_h28a55e0_0_cuda11.3
- ffmpeg=4.3=hf484d3e_0
- freetype=2.11.0=h70c0345_0
- giflib=5.2.1=h7b6447c_0
- gmp=6.2.1=h2531618_2
- gnutls=3.6.15=he1e5248_0
- intel-openmp=2021.4.0=h06a4308_3561
- ipykernel=6.15.2=py37h06a4308_0
- ipython=7.31.1=py37h06a4308_1
- jedi=0.18.1=py37h06a4308_1
- joblib=1.1.0=pyhd3eb1b0_0
- jpeg=9d=h7f8727e_0
- jupyter_client=7.1.2=pyhd3eb1b0_0
- jupyter_core=4.11.1=py37h06a4308_0
- lame=3.100=h7b6447c_0
- lcms2=2.12=h3be6417_0
- ld_impl_linux-64=2.35.1=h7274673_9
- libfaiss=1.7.2=hfc2d529_0_cuda11.3
- libffi=3.3=he6710b0_2
- libgcc-ng=9.3.0=h5101ec6_17
- libgfortran-ng=7.5.0=ha8ba4b0_17
- libgfortran4=7.5.0=ha8ba4b0_17
- libgomp=9.3.0=h5101ec6_17
- libiconv=1.15=h63c8f33_5
- libidn2=2.3.2=h7f8727e_0
- libpng=1.6.37=hbc83047_0
- libsodium=1.0.18=h7b6447c_0
- libstdcxx-ng=9.3.0=hd4cf53a_17
- libtasn1=4.16.0=h27cfd23_0
- libtiff=4.2.0=h85742a9_0
- libunistring=0.9.10=h27cfd23_0
- libuv=1.40.0=h7b6447c_0
- libwebp=1.2.2=h55f646e_0
- libwebp-base=1.2.2=h7f8727e_0
- lz4-c=1.9.3=h295c915_1
- matplotlib-inline=0.1.6=py37h06a4308_0
- mkl=2021.4.0=h06a4308_640
- mkl-service=2.4.0=py37h7f8727e_0
- mkl_fft=1.3.1=py37hd3c417c_0
- mkl_random=1.2.2=py37h51133e4_0
- ncurses=6.3=h7f8727e_2
- nest-asyncio=1.5.5=py37h06a4308_0
- nettle=3.7.3=hbbd107a_1
- numpy=1.21.2=py37h20f2e39_0
- numpy-base=1.21.2=py37h79a1101_0
- olefile=0.46=py37_0
- openh264=2.1.1=h4ff587b_0
- openssl=1.1.1q=h7f8727e_0
- packaging=21.3=pyhd3eb1b0_0
- parso=0.8.3=pyhd3eb1b0_0
- pexpect=4.8.0=pyhd3eb1b0_3
- pickleshare=0.7.5=pyhd3eb1b0_1003
- pillow=8.4.0=py37h5aabda8_0
- pip=21.2.2=py37h06a4308_0
- prompt-toolkit=3.0.20=pyhd3eb1b0_0
- ptyprocess=0.7.0=pyhd3eb1b0_2
- py=1.11.0=pyhd3eb1b0_0
- pygments=2.11.2=pyhd3eb1b0_0
- pyparsing=3.0.9=py37h06a4308_0
- python=3.7.11=h12debd9_0
- python-dateutil=2.8.2=pyhd3eb1b0_0
- pytorch=1.10.2=py3.7_cuda11.3_cudnn8.2.0_0
- pytorch-mutex=1.0=cuda
- pyzmq=22.3.0=py37h295c915_2
- readline=8.1.2=h7f8727e_1
- scikit-learn=1.0.2=py37h51133e4_1
- scipy=1.7.3=py37hc147768_0
- setuptools=58.0.4=py37h06a4308_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.37.2=hc218d9a_0
- threadpoolctl=2.2.0=pyh0d69192_0
- tk=8.6.11=h1ccaba5_0
- torchvision=0.11.3=py37_cu113
- tornado=6.1=py37h27cfd23_0
- tqdm=4.62.3=pyhd3eb1b0_1
- traitlets=5.1.1=pyhd3eb1b0_0
- typing_extensions=3.10.0.2=pyh06a4308_0
- wcwidth=0.2.5=pyhd3eb1b0_0
- wheel=0.37.1=pyhd3eb1b0_0
- xz=5.2.5=h7b6447c_0
- zeromq=4.3.4=h2531618_0
- zlib=1.2.11=h7f8727e_4
- zstd=1.4.9=haebb681_0
- pip:
- charset-normalizer==2.0.12
- click==8.0.4
- docker-pycreds==0.4.0
- gitdb==4.0.9
- gitpython==3.1.27
- idna==3.3
- importlib-metadata==4.11.1
- pathtools==0.1.2
- promise==2.3
- protobuf==3.19.4
- psutil==5.9.0
- pyyaml==6.0
- requests==2.27.1
- sentry-sdk==1.5.6
- shortuuid==1.0.8
- smmap==5.0.0
- termcolor==1.1.0
- urllib3==1.26.8
- wandb==0.12.10
- yaspin==2.1.0
- zipp==3.7.0
conda指令如下:
conda env create -f environment.yml
运行过程如下:
(base) ubuntu@xwk2:~/GG$ conda env create -f environment.yml
Retrieving notices: ...working... done
Collecting package metadata (repodata.json): - WARNING conda.models.version:get_matcher(556): Using .* with relational operator is superfluous and deprecated and will be removed in a future version of conda. Your spec was 1.7.1.*, but conda is ignoring the .* and treating it as 1.7.1
WARNING conda.models.version:get_matcher(556): Using .* with relational operator is superfluous and deprecated and will be removed in a future version of conda. Your spec was 1.9.0.*, but conda is ignoring the .* and treating it as 1.9.0
WARNING conda.models.version:get_matcher(556): Using .* with relational operator is superfluous and deprecated and will be removed in a future version of conda. Your spec was 1.8.0.*, but conda is ignoring the .* and treating it as 1.8.0
WARNING conda.models.version:get_matcher(556): Using .* with relational operator is superfluous and deprecated and will be removed in a future version of conda. Your spec was 1.6.0.*, but conda is ignoring the .* and treating it as 1.6.0
done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 23.7.3
latest version: 24.4.0
Please update conda by running
$ conda update -n base -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda
Or to minimize the number of packages updated during conda update use
conda install conda=24.4.0
Downloading and Extracting Packages
blas-1.0 | 6 KB | ############################################################################## | 100%
certifi-2022.9.24 | 154 KB | ############################################################################## | 100%
setuptools-58.0.4 | 775 KB | ############################################################################## | 100%
numpy-base-1.21.2 | 4.8 MB | ############################################################################## | 100%
ipykernel-6.15.2 | 189 KB | ############################################################################## | 100%
prompt-toolkit-3.0.2 | 259 KB | ############################################################################## | 100%
pygments-2.11.2 | 759 KB | ############################################################################## | 100%
python-3.7.11 | 45.3 MB | ############################################################################## | 100%
pyzmq-22.3.0 | 465 KB | ############################################################################## | 100%
libunistring-0.9.10 | 536 KB | ############################################################################## | 100%
entrypoints-0.4 | 16 KB | ############################################################################## | 100%
... (more hidden) ...
Preparing transaction: done
Verifying transaction: done
Executing transaction: \ By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html
\
Installed package of scikit-learn can be accelerated using scikit-learn-intelex.
More details are available here: https://intel.github.io/scikit-learn-intelex
For example:
$ conda install scikit-learn-intelex
$ python -m sklearnex my_application.py
done
Installing pip dependencies: \ Ran pip subprocess with arguments:
['/home/ubuntu/miniconda3/envs/con_110/bin/python', '-m', 'pip', 'install', '-U', '-r', '/home/ubuntu/GLC/condaenv.h1f9e76a.requirements.txt', '--exists-action=b']
Pip subprocess output:
Collecting charset-normalizer==2.0.12
Downloading charset_normalizer-2.0.12-py3-none-any.whl (39 kB)
Collecting click==8.0.4
Downloading click-8.0.4-py3-none-any.whl (97 kB)
Collecting docker-pycreds==0.4.0
Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)
Collecting gitdb==4.0.9
Downloading gitdb-4.0.9-py3-none-any.whl (63 kB)
Collecting gitpython==3.1.27
Downloading GitPython-3.1.27-py3-none-any.whl (181 kB)
Collecting idna==3.3
Downloading idna-3.3-py3-none-any.whl (61 kB)
Collecting importlib-metadata==4.11.1
Downloading importlib_metadata-4.11.1-py3-none-any.whl (17 kB)
Collecting pathtools==0.1.2
Downloading pathtools-0.1.2.tar.gz (11 kB)
Collecting promise==2.3
Downloading promise-2.3.tar.gz (19 kB)
Collecting protobuf==3.19.4
Downloading protobuf-3.19.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)
Collecting psutil==5.9.0
Downloading psutil-5.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (280 kB)
Collecting pyyaml==6.0
Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)
Collecting requests==2.27.1
Downloading requests-2.27.1-py2.py3-none-any.whl (63 kB)
Collecting sentry-sdk==1.5.6
Downloading sentry_sdk-1.5.6-py2.py3-none-any.whl (144 kB)
Collecting shortuuid==1.0.8
Downloading shortuuid-1.0.8-py3-none-any.whl (9.5 kB)
Collecting smmap==5.0.0
Downloading smmap-5.0.0-py3-none-any.whl (24 kB)
Collecting termcolor==1.1.0
Downloading termcolor-1.1.0.tar.gz (3.9 kB)
Collecting urllib3==1.26.8
Downloading urllib3-1.26.8-py2.py3-none-any.whl (138 kB)
Collecting wandb==0.12.10
Downloading wandb-0.12.10-py2.py3-none-any.whl (1.7 MB)
Collecting yaspin==2.1.0
Downloading yaspin-2.1.0-py3-none-any.whl (18 kB)
Collecting zipp==3.7.0
Downloading zipp-3.7.0-py3-none-any.whl (5.3 kB)
Requirement already satisfied: six>=1.4.0 in /home/ubuntu/miniconda3/envs/con_110/lib/python3.7/site-packages (from docker-pycreds==0.4.0->-r /home/ubuntu/GLC/condaenv.h1f9e76a.requirements.txt (line 3)) (1.16.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/ubuntu/miniconda3/envs/con_110/lib/python3.7/site-packages (from gitpython==3.1.27->-r /home/ubuntu/GLC/condaenv.h1f9e76a.requirements.txt (line 5)) (3.10.0.2)
Requirement already satisfied: certifi>=2017.4.17 in /home/ubuntu/miniconda3/envs/con_110/lib/python3.7/site-packages (from requests==2.27.1->-r /home/ubuntu/GLC/condaenv.h1f9e76a.requirements.txt (line 13)) (2022.9.24)
Requirement already satisfied: python-dateutil>=2.6.1 in /home/ubuntu/miniconda3/envs/con_110/lib/python3.7/site-packages (from wandb==0.12.10->-r /home/ubuntu/GLC/condaenv.h1f9e76a.requirements.txt (line 19)) (2.8.2)
Building wheels for collected packages: pathtools, promise, termcolor
Building wheel for pathtools (setup.py): started
Building wheel for pathtools (setup.py): finished with status 'done'
Created wheel for pathtools: filename=pathtools-0.1.2-py3-none-any.whl size=8806 sha256=a66ada93957cf7fc7b3ef5bffd7844b018a4a97eaca9289f2e292761489ee2d8
Stored in directory: /home/ubuntu/.cache/pip/wheels/3e/31/09/fa59cef12cdcfecc627b3d24273699f390e71828921b2cbba2
Building wheel for promise (setup.py): started
Building wheel for promise (setup.py): finished with status 'done'
Created wheel for promise: filename=promise-2.3-py3-none-any.whl size=21503 sha256=884eb51f491d088c5fb1959e5be5f3ec41086ef58eac9c32cc737c5c83a45578
Stored in directory: /home/ubuntu/.cache/pip/wheels/29/93/c6/762e359f8cb6a5b69c72235d798804cae523bbe41c2aa8333d
Building wheel for termcolor (setup.py): started
Building wheel for termcolor (setup.py): finished with status 'done'
Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4848 sha256=889e55b1d10f55c622c011af4442358d02ae5abd2629c38ed91bdaebd3dd542d
Stored in directory: /home/ubuntu/.cache/pip/wheels/3f/e3/ec/8a8336ff196023622fbcb36de0c5a5c218cbb24111d1d4c7f2
Successfully built pathtools promise termcolor
Installing collected packages: zipp, smmap, urllib3, termcolor, importlib-metadata, idna, gitdb, charset-normalizer, yaspin, shortuuid, sentry-sdk, requests, pyyaml, psutil, protobuf, promise, pathtools, gitpython, docker-pycreds, click, wandb
Attempting uninstall: psutil
Found existing installation: psutil 5.8.0
Uninstalling psutil-5.8.0:
Successfully uninstalled psutil-5.8.0
Successfully installed charset-normalizer-2.0.12 click-8.0.4 docker-pycreds-0.4.0 gitdb-4.0.9 gitpython-3.1.27 idna-3.3 importlib-metadata-4.11.1 pathtools-0.1.2 promise-2.3 protobuf-3.19.4 psutil-5.9.0 pyyaml-6.0 requests-2.27.1 sentry-sdk-1.5.6 shortuuid-1.0.8 smmap-5.0.0 termcolor-1.1.0 urllib3-1.26.8 wandb-0.12.10 yaspin-2.1.0 zipp-3.7.0
done
#
# To activate this environment, use
#
# $ conda activate con_110
#
# To deactivate an active environment, use
#
# $ conda deactivate
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程