首页 > Python资料 博客日记
Python图数据
2023-08-12 08:24:38Python资料围观246次
这篇文章介绍了Python图数据,分享给大家做个参考,收藏Python资料网收获更多编程知识
CSGraph代表压缩稀疏图,它着重于基于稀疏矩阵表示的快速图算法。
图的表示
首先,让我们了解一个稀疏图是什么以及它在图表示中的作用。
什么是稀疏图?
图形只是节点的集合,它们之间有链接。 图表几乎可以代表任何事物 - 社交网络连接,每个节点都是一个人,并且与熟人相连; 图像,其中每个节点是像素并连接到相邻像素; 指向高维分布,其中每个节点都连接到最近的邻居,并且几乎可以想象其他任何事物。
- Isomap - 流形学习算法,需要在图中找到最短路径。
- 分层聚类 - 基于最小生成树的聚类算法。
- 谱分解 - 基于稀疏图拉普拉斯算子的投影算法。
一个具体的例子,假设想要表示无向图,如下所示 -
该图有三个节点,其中节点0
和1通过权重2
的边连接,节点0
和2
通过权重1
的边连接。可以构造如下例所示的稠密,掩码和稀疏表示 请记住,无向图由对称矩阵表示。
G_dense = np.array([ [0, 2, 1],
[2, 0, 0],
[1, 0, 0] ])
G_masked = np.ma.masked_values(G_dense, 0)
from scipy.sparse import csr_matrix
G_sparse = csr_matrix(G_dense)
print (G_sparse.data)
上述程序将生成以下输出。
array([2, 1, 2, 1])
这与前面的图相同,只是节点0
和2
通过零权重的边连接。 在这种情况下,上面的密集表示会导致含糊不清 - 如果零是一个有意义的值,那么如何表示非边缘。 在这种情况下,必须使用蒙版或稀疏表示来消除歧义。
看看下面的例子。
from scipy.sparse.csgraph import csgraph_from_dense
G2_data = np.array
([
[np.inf, 2, 0 ],
[2, np.inf, np.inf],
[0, np.inf, np.inf]
])
G2_sparse = csgraph_from_dense(G2_data, null_value=np.inf)
print (G2_sparse.data)
上述程序将生成以下输出。
array([ 2., 0., 2., 0.])
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程