首页 > Python资料 博客日记

Window 下Mamba 环境安装踩坑问题汇总及解决方法 (无需绕过selective_scan_cuda)

2024-08-22 16:00:05Python资料围观592

这篇文章介绍了Window 下Mamba 环境安装踩坑问题汇总及解决方法 (无需绕过selective_scan_cuda),分享给大家做个参考,收藏Python资料网收获更多编程知识

导航

背景

Mamba 官方代码链接为:https://github.com/state-spaces/mamba,在原来博客 “Mamba 环境安装踩坑问题汇总及解决方法” 基础上,不绕过selective_scan_cuda,进行 Mamba 环境安装,这样可以获得和 Linux 一样的速度1

安装问题 / 资源自取 / 论文合作想法请+vx931744281

Windows 下环境准备

  1. 前期环境准备,同原来博客 “Mamba 环境安装踩坑问题汇总及解决方法” ,具体为:
conda create -n mamba python=3.10
conda activate mamba
conda install cudatoolkit==11.8
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
pip install setuptools==68.2.2
conda install nvidia/label/cuda-11.8.0::cuda-nvcc_win-64
conda install packaging
pip install triton-2.0.0-cp310-cp310-win_amd64.whl

其中 triton-2.0.0-cp310-cp310-win_amd64.whl 获取参看原来博客 “Mamba 环境安装踩坑问题汇总及解决方法” 。

  1. causal-conv1d 的安装,同原来博客 “Mamba 环境安装踩坑问题汇总及解决方法” ,具体细化为:
git clone https://github.com/Dao-AILab/causal-conv1d.git
cd causal-conv1d
git checkout v1.1.3  # 安装最新版的话,此步可省略
set CAUSAL_CONV1D_FORCE_BUILD=TRUE
pip install .

官方没有编译好的适用于Windows版本的 whl,因此需要用上述步骤来手动编译。笔者编译好了 Windows 下的 causal_conv1d-1.1.1-cp310-cp310-win_amd64.whl,亦可直接下载安装(只适用于torch 2.1)。

pip install causal_conv1d-1.1.1-cp310-cp310-win_amd64.whl

成功安装之后,会在相应虚拟环境中(xxx\conda\envs\xxx\Lib\site-packages\)产生 causal_conv1d_cuda.cp310-win_amd64.pyd 文件,此文件对应 causal_conv1d_cuda 包。

  1. mamba-ssm 环境准备,下载工程文件,即
git clone https://github.com/state-spaces/mamba.git
cd mamba
git checkout v1.1.3   # 安装最新版的话,此步可省略

注意,上述过程中,新版 mamba-ssm 需要搭配新版 causal-conv1d,要不然函数不兼容。完成前期工作后进入下一步正式编译。

Windows 下 mamba-ssm 的编译

  • 在mamba源码 setup.py 修改第41行配置:
FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "TRUE") == "TRUE"
  • csrc/selective_scan/selective_scan_fwd_kernel.cuhvoid selective_scan_fwd_launch 函数改为
void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
    // Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
    // processing 1 row.
    static constexpr int kNRows = 1;
    BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
        BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
            BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
                BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
                    using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
                    // constexpr int kSmemSize = Ktraits::kSmemSize;
                    static constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
                    // printf("smem_size = %d\n", kSmemSize);
                    dim3 grid(params.batch, params.dim / kNRows);
                    auto kernel = &selective_scan_fwd_kernel<Ktraits>;
                    if (kSmemSize >= 48 * 1024) {
                        C10_CUDA_CHECK(cudaFuncSetAttribute(
                            kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
                    }
                    kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
                    C10_CUDA_KERNEL_LAUNCH_CHECK();
                });
            });
        });
    });
}
  • csrc/selective_scan/static_switch.hBOOL_SWITCH 函数改为
#define BOOL_SWITCH(COND, CONST_NAME, ...)                                           \
    [&] {                                                                            \
        if (COND) {                                                                  \
            static constexpr bool CONST_NAME = true;                                        \
            return __VA_ARGS__();                                                    \
        } else {                                                                     \
            static constexpr bool CONST_NAME = false;                                       \
            return __VA_ARGS__();                                                    \
        }                                                                            \
    }()

(这两步是将 constexpr 改为 static constexpr

  • csrc/selective_scan/cus/selective_scan_bwd_kernel.cuhcsrc/selective_scan/cus/selective_scan_fwd_kernel.cuh 文件开头加入:
#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif
  • 完成上述修改后,执行 pip install . 一般即可顺利编译,成功安装。
  • 本人编译好的Windows 下的whl 也有:mamba-ssm-1.1.3 (只适用于torch 2.1),可直接下载安装或联系本人vx自取。利用 whl 安装命令为:
pip install mamba_ssm-1.1.3-cp310-cp310-win-amd64.whl

由于此时没有绕过selective_scan_cuda,在虚拟环境中(xxx\conda\envs\xxx\Lib\site-packages\)产生了 selective-scan-cuda.cp310-win-amd64.pyd 文件,所以运行速度较快。

Windows 下 mamba_ssm 的编译出现的问题及解决(20240714)

1. 基本报错信息

如果不进行修改利用 `pip install .`` 直接编译源码时会出现如下报错:

subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1.
      
      The above exception was the direct cause of the following exception:
      
      Traceback (most recent call last):

        File "/data/xxx/anaconda3/envs/xxx/lib/python3.10/site-packages/torch/utils/cpp_extension.py", line 2116, in _run_ninja_build
          raise RuntimeError(message) from e
      RuntimeError: Error compiling objects for extension
      [end of output]

这是最基本的报错信息,只要编译出错就会输出这些,如果在其上面没有看到具体报错,可在 setup.py 里面,将

cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}

改为

cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension.with_options(use_ninja=False)}

pytorch默认使用ninjia作为backend2,禁用掉可以看到具体的报错,但是编译速度实测会变慢,所以解决bug后可以改回来。

注:有的博客将 anaconda环境下的 lib/python3.6/site-packages/torch/utils/cpp_extension.py文件里的[‘ninja’,‘-v’]改成[‘ninja’,‘–v’] 或者[‘ninja’,‘–version’] 是错误的做法,治标不治本。

2. “M_LOG2E” is undefined

在Windows下会出现如下大量报错:

 xxx\mamba-1.1.3\csrc\selective_scan\selective_scan_bwd_kernel.cuh(221): error: identifier "M_LOG2E" is undefined

出现这种情况的原因,可参考 issue

Note for the owners: The reason for needing #define is stated here: https://stackoverflow.com/a/56974843:
“On windows it is using the Microsoft compiler for that. So the Microsoft compiler is correct to disallow VLA, and there is no way to avoid this AFAIK. Your code works on linux, because on linux nvcc uses the g++ host compiler, and it allows (in a non-standard-compliant way) the use of a VLA in C++ host code.”

因此,只需在csrc/selective_scan/cus/selective_scan_bwd_kernel.cuhcsrc/selective_scan/cus/selective_scan_fwd_kernel.cuh 文件加入以下代码即可

#ifndef M_LOG2E
#define M_LOG2E 1.4426950408889634074
#endif

3. error C2975: “kIsVariableC_”

在Windows下会出现如下大量报错:

error C2975: “kIsVariableC_”:“Selective_Scan_bwd_kernel_traits”的模板参数无效,应为编译时常量表达式

csrc/selective_scan/static_switch.h 函数里的 constexpr 改为 static constexpr,参考 issue。具体步骤参看前一节。

4. error C2975: “kNRows_”

在Windows下会出现如下大量报错:

xxx\mamba-1.1.3\csrc\selective_scan\selective_scan_fwd_kernel.cuh(314): error C2975: “kNRows_”:“Selective_Scan_fwd_kernel_traits”的模板参数无效,应为编译时常量表达式

csrc/selective_scan/selective_scan_fwd_kernel.cuh 函数 void selective_scan_fwd_launch 里的 constexpr 改为 static constexpr,参考 issue。具体步骤参看前一节。

20240724 更新

5. ImportError: DLL load failed

有的同学在安装好之后发现出现了以下报错:

ImportError: DLL load failed while importing causal_conv1d_cuda: 找不到指定的程序。

或者是

ImportError: DLL load failed while importing selective_scan_cuda: 找不到指定的程序。

虽然在虚拟环境的相应位置中,已经生成了 causal_conv1d_cuda.cp310-win-amd64.pydselective-scan-cuda.cp310-win-amd64.pyd 但是还是无法导入调用。

查询这两个包的依赖项,发现


它们均高度依赖于torch的相关dll,因此推测出现报错是由于torch的版本发生冲突。卸载torch 并重新安装发现解决问题。(某同学环境中装了两个不同版本的torch,因此冲突)

pip uninstall torch
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118

由于本人前面的编译的两个whl环境均为 torch 2.1,所以大家安装的环境必须也得是2.1,否则通过whl安装调用相关函数时就会报这个错误。


  1. Windows Support #12 ↩︎

  2. 出现错误“subprocess.CalledProcessError: Command ‘[‘ninja‘, ‘-v‘]‘ returned non-zero exit status 1”解决方法 ↩︎


版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐