首页 > Python资料 博客日记
【摄像头标定】使用opencv进行双目摄像头的标定及矫正(python)
2024-09-17 21:00:05Python资料围观37次
Python资料网推荐【摄像头标定】使用opencv进行双目摄像头的标定及矫正(python)这篇文章给大家,欢迎收藏Python资料网享受知识的乐趣
棋盘格标定板
本文使用棋盘格标定板,可以到这篇博客中下载:https://blog.csdn.net/qq_39330520/article/details/107864568
标定
要进行标定首先需要双目拍的棋盘格图片,20张左右,由于本文的双目摄像头嵌入在开发板底板中,并且使用的是ros进行开发,所以对于大部分人拍照这里是没有参考价值的,对于也是使用ros开发的小伙伴,需要写一个节点发布双目摄像头的图像数据,然后再写一个节点订阅双目摄像头数据进行拍照保存。本文重点也不在拍照,对于其他小伙伴可以直接搜索一些适用的拍照方法,只要能获得到图片即可。
左摄像头图片如下:
右摄像头图片如下:
由于摄像头底层代码有问题,所以图像很暗,但不影响标定。
标定代码如下:
import cv2
import os
import numpy as np
import itertools
import yaml
# 定义文件夹路径
left_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic"
right_folder = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic"
# 获取图像文件列表并排序
left_images = sorted(os.listdir(left_folder))
right_images = sorted(os.listdir(right_folder))
# 确保左右相机图像数量一致
assert len(left_images) == len(right_images), "左右相机图像数量不一致"
# 加载两个摄像头图片文件夹并将里面的彩图转换为灰度图
def load_images(folder, images):
img_list = []
for img_name in images:
img_path = os.path.join(folder, img_name)
frame = cv2.imread(img_path)
if frame is not None:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
img_list.append((frame, gray))
else:
print(f"无法读取图像: {img_path}")
return img_list
# 检测棋盘格角点
def get_corners(imgs, pattern_size):
corners = []
for frame, gray in imgs:
ret, c = cv2.findChessboardCorners(gray, pattern_size) #ret 表示是否成功找到棋盘格角点,c 是一个数组,包含了检测到的角点的坐标
if not ret:
print("未能检测到棋盘格角点")
continue
c = cv2.cornerSubPix(gray, c, (5, 5), (-1, -1),
(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) #cv2.cornerSubPix 函数用于提高棋盘格角点的精确度,对初始检测到的角点坐标 c 进行优化
corners.append(c) #将优化后的角点坐标 c 添加到 corners 列表中
# 绘制角点并显示
vis = frame.copy()
cv2.drawChessboardCorners(vis, pattern_size, c, ret)
new_size = (1280, 800)
resized_img = cv2.resize(vis, new_size)
cv2.imshow('Corners', resized_img)
cv2.waitKey(150)
return corners
# 相机标定
def calibrate_camera(object_points, corners, imgsize):
cm_input = np.eye(3, dtype=np.float32)
ret = cv2.calibrateCamera(object_points, corners, imgsize, cm_input, None)
return ret
def save_calibration_to_yaml(file_path, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F):
data = {
'camera_matrix_left': {
'rows': 3,
'cols': 3,
'dt': 'd',
'data': cameraMatrix_l.flatten().tolist()
},
'dist_coeff_left': {
'rows': 1,
'cols': 5,
'dt': 'd',
'data': distCoeffs_l.flatten().tolist()
},
'camera_matrix_right': {
'rows': 3,
'cols': 3,
'dt': 'd',
'data': cameraMatrix_r.flatten().tolist()
},
'dist_coeff_right': {
'rows': 1,
'cols': 5,
'dt': 'd',
'data': distCoeffs_r.flatten().tolist()
},
'R': {
'rows': 3,
'cols': 3,
'dt': 'd',
'data': R.flatten().tolist()
},
'T': {
'rows': 3,
'cols': 1,
'dt': 'd',
'data': T.flatten().tolist()
},
'E': {
'rows': 3,
'cols': 3,
'dt': 'd',
'data': E.flatten().tolist()
},
'F': {
'rows': 3,
'cols': 3,
'dt': 'd',
'data': F.flatten().tolist()
}
}
with open(file_path, 'w') as file:
yaml.dump(data, file, default_flow_style=False)
print(f"Calibration parameters saved to {file_path}")
img_left = load_images(left_folder, left_images) #img_left是个列表,存放左摄像头所有的灰度图片。
img_right = load_images(right_folder, right_images)
pattern_size = (8, 5)
corners_left = get_corners(img_left, pattern_size) #corners_left的长度表示检测到棋盘格角点的图像数量。corners_left[i] 和 corners_right[i] 中存储了第 i 张图像检测到的棋盘格角点的二维坐标。
corners_right = get_corners(img_right, pattern_size)
cv2.destroyAllWindows()
# 断言,确保所有图像都检测到角点
assert len(corners_left) == len(img_left), "有图像未检测到左相机的角点"
assert len(corners_right) == len(img_right), "有图像未检测到右相机的角点"
# 准备标定所需数据
points = np.zeros((8 * 5, 3), dtype=np.float32) #创建40 行 3 列的零矩阵,用于存储棋盘格的三维坐标点。棋盘格的大小是 8 行 5 列,40 个角点。数据类型为 np.float32,这是一张图的,因为一个角点对应一个三维坐标
points[:, :2] = np.mgrid[0:8, 0:5].T.reshape(-1, 2) * 21 #给这些点赋予实际的物理坐标,* 21 是因为每个棋盘格的大小为 21mm
object_points = [points] * len(corners_left) #包含了所有图像中棋盘格的三维物理坐标点 points。这里假设所有图像中棋盘格的物理坐标是相同的,因此用 points 复制 len(corners_left) 次。
imgsize = img_left[0][1].shape[::-1] #img_left[0] 是左相机图像列表中的第一张图像。img_left[0][1] 是该图像的灰度图像。shape[::-1] 取灰度图像的宽度和高度,并反转顺序,以符合 calibrateCamera 函数的要求。
print('开始左相机标定')
ret_l = calibrate_camera(object_points, corners_left, imgsize) #object_points表示标定板上检测到的棋盘格角点的三维坐标;corners_left[i]表示棋盘格角点在图像中的二维坐标;imgsize表示图像大小
retval_l, cameraMatrix_l, distCoeffs_l, rvecs_l, tvecs_l = ret_l[:5] #返回值里就包含了标定的参数
print('开始右相机标定')
ret_r = calibrate_camera(object_points, corners_right, imgsize)
retval_r, cameraMatrix_r, distCoeffs_r, rvecs_r, tvecs_r = ret_r[:5]
# 立体标定,得到左右相机的外参:旋转矩阵、平移矩阵、本质矩阵、基本矩阵
print('开始立体标定')
criteria_stereo = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-5)
ret_stereo = cv2.stereoCalibrate(object_points, corners_left, corners_right,
cameraMatrix_l, distCoeffs_l,
cameraMatrix_r, distCoeffs_r,
imgsize, criteria=criteria_stereo,
flags=cv2.CALIB_FIX_INTRINSIC)
ret, _, _, _, _, R, T, E, F = ret_stereo
# 输出结果
print("左相机内参:\n", cameraMatrix_l)
print("左相机畸变系数:\n", distCoeffs_l)
print("右相机内参:\n", cameraMatrix_r)
print("右相机畸变系数:\n", distCoeffs_r)
print("旋转矩阵 R:\n", R)
print("平移向量 T:\n", T)
print("本质矩阵 E:\n", E)
print("基本矩阵 F:\n", F)
print("标定完成")
# 保存标定结果
save_calibration_to_yaml('calibration_parameters.yaml', cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T, E, F)
# 计算重投影误差
def compute_reprojection_errors(objpoints, imgpoints, rvecs, tvecs, mtx, dist):
total_error = 0
total_points = 0
for i in range(len(objpoints)):
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2) / len(imgpoints2)
total_error += error
total_points += len(imgpoints2)
mean_error = total_error / total_points
return mean_error
# 计算并打印左相机和右相机的重投影误差
print("左相机重投影误差: ", compute_reprojection_errors(object_points, corners_left, rvecs_l, tvecs_l, cameraMatrix_l, distCoeffs_l))
print("右相机重投影误差: ", compute_reprojection_errors(object_points, corners_right, rvecs_r, tvecs_r, cameraMatrix_r, distCoeffs_r))
# 立体矫正和显示
def stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T):
img_size = img_l.shape[:2][::-1]
# 立体校正
R1, R2, P1, P2, Q, _, _ = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, img_size, R, T)
map1x, map1y = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)
map2x, map2y = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)
# 图像矫正
rectified_img_l = cv2.remap(img_l, map1x, map1y, cv2.INTER_LINEAR)
rectified_img_r = cv2.remap(img_r, map2x, map2y, cv2.INTER_LINEAR)
# 显示矫正后的图像
combined_img = np.hstack((rectified_img_l, rectified_img_r))
cv2.imshow('Rectified Images', combined_img)
cv2.imwrite("stereo_jiaozheng.png",combined_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 加载并矫正示例图像
example_idx = 0
img_l = img_left[example_idx][0]
img_r = img_right[example_idx][0]
stereo_rectify_and_display(img_l, img_r, cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T)
标定完成后会显示一张矫正后的图像。代码重要的地方都给出了注释,主要流程就是分别对左右相机进行标定,然后对两个相机进行联合标定(立体标定),最后得到的参数会保存到yaml文件中:
---
camera_matrix_left:
rows: 3
cols: 3
dt: d
data:
- 531.7200210313852
- 0
- 642.0170539101581
- 0
- 533.6471323984354
- 420.4033045027399
- 0
- 0
- 1
dist_coeff_left:
rows: 1
cols: 5
dt: d
data:
- -0.1670007968198256
- 0.04560028196221921
- 0.0011938487550718078
- -0.000866537907860316
- -0.00805042100882671
camera_matrix_right:
rows: 3
cols: 3
dt: d
data:
- 525.9058345430292
- 0
- 628.7761214904813
- 0
- 528.2078922687268
- 381.8575789135264
- 0
- 0
- 1
dist_coeff_right:
rows: 1
cols: 5
dt: d
data:
- -0.15320688387351564
- 0.03439886104586617
- -0.0003732170677440928
- -0.0024909528446780153
- -0.005138400994014348
R:
rows: 3
cols: 3
dt: d
data:
- 0.9999847004116569
- -0.00041406631566505544
- 0.005516112008926496
- 0.0003183979929468572
- 0.9998497209492369
- 0.017333036100216304
- -0.005522460079247196
- -0.017331014592906722
- 0.9998345554979852
T:
rows: 3
cols: 1
dt: d
data:
- -55.849260376265015
- 2.1715925432988743
- 0.46949841441903933
E:
rows: 3
cols: 3
dt: d
data:
- -0.012142020481601675
- -0.5070637607007459
- 2.1630954322858496
- 0.1610659204031652
- -0.9681187500627653
- 55.84261022903612
- -2.189341611238282
- -55.83996821910631
- -0.9800159939787676
F:
rows: 3
cols: 3
dt: d
data:
- -2.4239149875305048e-8
- -0.0000010085973649868748
- 0.0027356495714066175
- 3.2013501988129346e-7
- -0.0000019172863951399893
- 0.05961765359743852
- -0.002405523166325036
- -0.057046539240958545
- 1
分别是左相机的内参矩阵、畸变系数,右相机的内参矩阵和畸变系数,两个相机之间的旋转矩阵、平移矩阵、本质矩阵、基本矩阵。
矫正
import cv2
import yaml
import numpy as np
# 定义函数读取标定数据
def read_calibration_data(calibration_file):
with open(calibration_file, 'r') as f:
calib_data = yaml.safe_load(f)
cameraMatrix_l = np.array(calib_data['camera_matrix_left']['data']).reshape(3, 3)
distCoeffs_l = np.array(calib_data['dist_coeff_left']['data'])
cameraMatrix_r = np.array(calib_data['camera_matrix_right']['data']).reshape(3, 3)
distCoeffs_r = np.array(calib_data['dist_coeff_right']['data'])
R = np.array(calib_data['R']['data']).reshape(3, 3)
T = np.array(calib_data['T']['data']).reshape(3, 1)
return cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T
# 定义函数对图像进行矫正
def rectify_images(left_image_path, right_image_path, calibration_file):
# 读取标定数据
cameraMatrix_l, distCoeffs_l, cameraMatrix_r, distCoeffs_r, R, T = read_calibration_data(calibration_file)
# 读取左右图像
img_left = cv2.imread(left_image_path)
img_right = cv2.imread(right_image_path)
# 获取图像尺寸(假设左右图像尺寸相同)
img_size = img_left.shape[:2][::-1]
# 立体校正
R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(cameraMatrix_l, distCoeffs_l,
cameraMatrix_r, distCoeffs_r,
img_size, R, T)
# 计算映射参数
map1_l, map2_l = cv2.initUndistortRectifyMap(cameraMatrix_l, distCoeffs_l, R1, P1, img_size, cv2.CV_32FC1)
map1_r, map2_r = cv2.initUndistortRectifyMap(cameraMatrix_r, distCoeffs_r, R2, P2, img_size, cv2.CV_32FC1)
# 应用映射并显示结果
rectified_img_l = cv2.remap(img_left, map1_l, map2_l, cv2.INTER_LINEAR)
rectified_img_r = cv2.remap(img_right, map1_r, map2_r, cv2.INTER_LINEAR)
# 合并图像显示
combined_img = np.hstack((rectified_img_l, rectified_img_r))
cv2.imshow('Rectified Images', combined_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 设置路径和文件名
left_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_left_pic/left_image0.png"
right_image_path = "C:/new_pycharm_project/yolov10-main/shuangmu_right_pic/right_image0.png"
calibration_file = "C:/new_pycharm_project/yolov10-main/calibration_parameters.yaml"
# 调用函数进行图像矫正
rectify_images(left_image_path, right_image_path, calibration_file)
结果对比:
第一张是矫正前的左右相机图像,第二张是矫正后的。可以看到去除了畸变,并且两图像基本出于同一水平线。
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj