首页 > Python资料 博客日记
Python大数据分析——Logistic回归模型
2024-09-26 16:00:05Python资料围观39次
概念
之前的回归的变量是连续的数值变量;而Logistics回归是二元离散值,用来解决二分类问题。
理论分析
上式中的hβ(X)也被称为Loqistic回归模型,它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。
其函数图像为:
其中,z∈(-∞,+∞)。当z趋于正无穷大时,e**-z将趋于0,进而导致g(z)逼近于1;相反,当z趋于负无穷大时,e**-z会趋于正无穷大,最终导致g(z)逼近于0;当z=0时,e**-z=1,所以得到g(z)=0.5。
我们对模型进行转化:
参数求解过程:
不难发现y=1的时候为p,y=0的时候为1-p,那么可以等价为(将离散状态变为函数状态)
进行极大似然估计(因为没有残差函数):
构造似然函数,有n行数据,每行数据的概率发生累乘起来
我们对其进行对数化,优化计算:
log(x1x2x3)=logx1+logx2+logx3
梯度下降:
我们只需要将其变为负数,就有极大求为了极小值,通过此来进行梯度下降的算法。
对其求偏导,每一个参数β做梯度下降
其中,α为学习率,也称为参数βj变化的步长,通常步长可以取0.1,0.05,0.01等。如果设置的α过小,会导致βj变化微小,需要经过多次迭代,收敛速度过慢;但如果设置的过大,就很难得到理想的βj值,进而导致目标函数可能是局部最小。
求出的参数含义:
通过建模可以得到对应的系数B和,则假设影响是否患癌的因素有性别和肿瘤两个变量Logistic回归模型可以按照事件发生比的形式改写为:
其中p/(1-p)叫优势比/发生比。
分别以性别变量x1和肿瘤体积变量x2为例,解释系数β1和β2的含义。假设性别中男用1表示,女用0表示,则:
所以,性别变量的发生比率为e** β1,表示男性患癌的发生比约为女性患癌发生比的e**β1倍。
对于连续型的自变量而言,参数解释类似,假设肿瘤体积为Volum0,当肿瘤体积增加1个单位时体积为Volum0+1,则:
所以,在其他变量不变的情况下,肿瘤体积每增加一个单位,将会使患癌发生比变化e**β2倍。
模型评估
混淆矩阵
A:表示正确预测负例的样本个数,用TN表示。
B:表示预测为负例但实际为正例的个数,用FN表示。
C:表示预测为正例但实际为负例的个数,用FP表示。
D:表示正确预测正例的样本个数,用TP表示。
准确率:表示正确预测的正负例样本数与所有样本数量的比值,即(A+D)/(A+B+C+D)。
正例覆盖率:表示正确预测的正例数在实际正例数中的比例,即D/(B+D)。
负例覆盖率:表示正确预测的负例数在实际负例数中的比例,即A/(A+C)。
正例命中率:表示正确预测的正例数在预测正例数中的比例,即D/(C+D),
正例:指的是非常关心的例子叫做正例,这里面就是恶性。
ROC曲线
图中的红色线为参考线,即在不使用模型的情况下,Sensitivity(正例覆盖率) 和 1-Specificity(1-负例覆盖率) 之比恒等于 1。通常绘制ROC曲线,不仅仅是得到左侧的图形,更重要的是计算折线下的面积,即图中的阴影部分,这个面积称为AUC。在做模型评估时,希望AUC的值越大越好,通常情况下,当AUC在0.8以上时,模型就基本可以接受了。
KS曲线
x轴叫阈值,图中的两条折线分别代表各分位点下的正例覆盖率和1-负例覆盖率,通过两条曲线很难对模型的好坏做评估,一般会选用最大的KS值作为衡量指标。KS的计算公式为:KS = Sensitivity-(1- Specificity) = Sensitivity+ Specificity-1。对于KS值而言,也是希望越大越好,通常情况下,当KS值大于0.4时,模型基本可以接受。
函数
LogisticRegression(tol=0.0001, fit_intercept=True,class_weight=None, max_iter=100)
tol:用于指定模型跌倒收敛的阈值
fit_intercept:bool类型参数,是否拟合模型的截距项,默认为True
class_weight:用于指定因变量类别的权重,如果为字典,则通过字典的形式{class_label:weight}传递每个类别的权重;如果为字符串’balanced’,则每个分类的权重与实际样本中的比例成反比,当各分类存在严重不平衡时,设置为’balanced’会比较好;如果为None,则表示每个分类的权重相等
max_iter:指定模型求解过程中的最大迭代次数, 默认为100
示例
- 我们先进行数据训练
# 导入第三方模块
import pandas as pd
import numpy as np
from sklearn import model_selection
from sklearn import linear_model
# 读取数据
sports = pd.read_csv(r'D:\pythonProject\data\Run or Walk.csv')
# 提取出所有自变量名称
predictors = sports.columns[4:]
# 构建自变量矩阵
X = sports.loc[:,predictors]
# 提取y变量值
y = sports.activity
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)
# 利用训练集建模
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
# 返回模型的各个参数(截距项和偏回归系数)
print(sklearn_logistic.intercept_, sklearn_logistic.coef_)
输出:
[4.36637441] [[ 0.48695898 6.87517973 -2.44872468 -0.01385936 -0.16085022 0.13389695]]
- 进行下预测查看效果
# 模型预测
sklearn_predict = sklearn_logistic.predict(X_test)
# 预测结果统计
pd.Series(sklearn_predict).value_counts()
输出:
0 12119 # 步行状态
1 10028 # 跑步状态
Name: count, dtype: int64
- 我们来看下混淆矩阵
# 导入第三方模块
from sklearn import metrics
# 混淆矩阵
cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])
cm
输出:
array([[9969, 1122],
[2150, 8906]], dtype=int64)
计算下有用值:
Accuracy = metrics._scorer.accuracy_score(y_test, sklearn_predict)
Sensitivity = metrics._scorer.recall_score(y_test, sklearn_predict)
Specificity = metrics._scorer.recall_score(y_test, sklearn_predict, pos_label=0)
print('模型准确率为%.2f%%' %(Accuracy*100))
print('正例覆盖率为%.2f%%' %(Sensitivity*100))
print('负例覆盖率为%.2f%%' %(Specificity*100))
输出:
模型准确率为85.23%
正例覆盖率为80.55%
负例覆盖率为89.88%
- ROC曲线
# y得分为模型预测正例的概率
y_score = sklearn_logistic.predict_proba(X_test)[:,1]
# 计算不同阈值下,fpr和tpr的组合值,其中fpr表示1-Specificity,tpr表示Sensitivity
fpr,tpr,threshold = metrics.roc_curve(y_test, y_score)
# 计算AUC的值
roc_auc = metrics.auc(fpr,tpr)
# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
# 显示图形
plt.show()
输出:
5. KS曲线
# 调用自定义函数,绘制K-S曲线
plot_ks(y_test = y_test, y_score = y_score, positive_flag = 1)
输出:
总代码:
# 导入第三方模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn import linear_model
from sklearn import metrics
# 0.自定义绘制ks曲线的函数
def plot_ks(y_test, y_score, positive_flag):
# 对y_test重新设置索引
y_test.index = np.arange(len(y_test))
# 构建目标数据集
target_data = pd.DataFrame({'y_test':y_test, 'y_score':y_score})
# 按y_score降序排列
target_data.sort_values(by = 'y_score', ascending = False, inplace = True)
# 自定义分位点
cuts = np.arange(0.1,1,0.1)
# 计算各分位点对应的Score值
index = len(target_data.y_score)*cuts
scores = np.array(target_data.y_score)[index.astype('int')]
# 根据不同的Score值,计算Sensitivity和Specificity
Sensitivity = []
Specificity = []
for score in scores:
# 正例覆盖样本数量与实际正例样本量
positive_recall = target_data.loc[(target_data.y_test == positive_flag) & (target_data.y_score>score),:].shape[0]
positive = sum(target_data.y_test == positive_flag)
# 负例覆盖样本数量与实际负例样本量
negative_recall = target_data.loc[(target_data.y_test != positive_flag) & (target_data.y_score<=score),:].shape[0]
negative = sum(target_data.y_test != positive_flag)
Sensitivity.append(positive_recall/positive)
Specificity.append(negative_recall/negative)
# 构建绘图数据
plot_data = pd.DataFrame({'cuts':cuts,'y1':1-np.array(Specificity),'y2':np.array(Sensitivity),
'ks':np.array(Sensitivity)-(1-np.array(Specificity))})
# 寻找Sensitivity和1-Specificity之差的最大值索引
max_ks_index = np.argmax(plot_data.ks)
plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y1.tolist()+[1], label = '1-Specificity')
plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y2.tolist()+[1], label = 'Sensitivity')
# 添加参考线
plt.vlines(plot_data.cuts[max_ks_index], ymin = plot_data.y1[max_ks_index],
ymax = plot_data.y2[max_ks_index], linestyles = '--')
# 添加文本信息
plt.text(x = plot_data.cuts[max_ks_index]+0.01,
y = plot_data.y1[max_ks_index]+plot_data.ks[max_ks_index]/2,
s = 'KS= %.2f' %plot_data.ks[max_ks_index])
# 显示图例
plt.legend()
# 显示图形
plt.show()
# 1.读取数据与训练
sports = pd.read_csv(r'D:\pythonProject\data\Run or Walk.csv')
# 提取出所有自变量名称
predictors = sports.columns[4:]
# 构建自变量矩阵
X = sports.loc[:,predictors]
# 提取y变量值
y = sports.activity
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)
# 利用训练集建模
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
# 返回模型的各个参数(截距项和偏回归系数)
# print(sklearn_logistic.intercept_, sklearn_logistic.coef_)
# 模型预测
sklearn_predict = sklearn_logistic.predict(X_test)
# 2.混淆矩阵
cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])
Accuracy = metrics._scorer.accuracy_score(y_test, sklearn_predict) # 模型覆盖率
Sensitivity = metrics._scorer.recall_score(y_test, sklearn_predict) # 正例覆盖率
Specificity = metrics._scorer.recall_score(y_test, sklearn_predict, pos_label=0) # 负例覆盖率
# 3.ROC曲线
# y得分为模型预测正例的概率
y_score = sklearn_logistic.predict_proba(X_test)[:,1]
# 计算不同阈值下,fpr和tpr的组合值,其中fpr表示1-Specificity,tpr表示Sensitivity
fpr,tpr,threshold = metrics.roc_curve(y_test, y_score)
# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加ROC曲线的轮廓
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 显示图形
plt.show()
# 4.KS曲线
# 调用自定义函数,绘制K-S曲线
plot_ks(y_test = y_test, y_score = y_score, positive_flag = 1)
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj