首页 > Python资料 博客日记
python 爱心代码
2024-02-25 04:00:06Python资料围观157次
Python资料网推荐python 爱心代码这篇文章给大家,欢迎收藏Python资料网享受知识的乐趣
python程序代码:heart.py
from math import cos, pi
import numpy as np
import cv2
import os, glob
class HeartSignal:
def __init__(self, curve="heart", title="Love U", frame_num=20, seed_points_num=2000, seed_num=None, highlight_rate=0.3,
background_img_dir="", set_bg_imgs=False, bg_img_scale=0.2, bg_weight=0.3, curve_weight=0.7, frame_width=1080, frame_height=960, scale=10.1,
base_color=None, highlight_points_color_1=None, highlight_points_color_2=None, wait=100, n_star=5, m_star=2):
super().__init__()
self.curve = curve
self.title = title
self.highlight_points_color_2 = highlight_points_color_2
self.highlight_points_color_1 = highlight_points_color_1
self.highlight_rate = highlight_rate
self.base_color = base_color
self.n_star = n_star
self.m_star = m_star
self.curve_weight = curve_weight
img_paths = glob.glob(background_img_dir + "/*")
self.bg_imgs = []
self.set_bg_imgs = set_bg_imgs
self.bg_weight = bg_weight
if os.path.exists(background_img_dir) and len(img_paths) > 0 and set_bg_imgs:
for img_path in img_paths:
img = cv2.imread(img_path)
self.bg_imgs.append(img)
first_bg = self.bg_imgs[0]
width = int(first_bg.shape[1] * bg_img_scale)
height = int(first_bg.shape[0] * bg_img_scale)
first_bg = cv2.resize(first_bg, (width, height), interpolation=cv2.INTER_AREA)
# 对齐图片,自动裁切中间
new_bg_imgs = [first_bg, ]
for img in self.bg_imgs[1:]:
width_close = abs(first_bg.shape[1] - img.shape[1]) < abs(first_bg.shape[0] - img.shape[0])
if width_close:
# resize
height = int(first_bg.shape[1] / img.shape[1] * img.shape[0])
width = first_bg.shape[1]
img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
# crop and fill
if img.shape[0] > first_bg.shape[0]:
crop_num = img.shape[0] - first_bg.shape[0]
crop_top = crop_num // 2
crop_bottom = crop_num - crop_top
img = np.delete(img, range(crop_top), axis=0)
img = np.delete(img, range(img.shape[0] - crop_bottom, img.shape[0]), axis=0)
elif img.shape[0] < first_bg.shape[0]:
fill_num = first_bg.shape[0] - img.shape[0]
fill_top = fill_num // 2
fill_bottom = fill_num - fill_top
img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=0)
else:
width = int(first_bg.shape[0] / img.shape[0] * img.shape[1])
height = first_bg.shape[0]
img = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
# crop and fill
if img.shape[1] > first_bg.shape[1]:
crop_num = img.shape[1] - first_bg.shape[1]
crop_top = crop_num // 2
crop_bottom = crop_num - crop_top
img = np.delete(img, range(crop_top), axis=1)
img = np.delete(img, range(img.shape[1] - crop_bottom, img.shape[1]), axis=1)
elif img.shape[1] < first_bg.shape[1]:
fill_num = first_bg.shape[1] - img.shape[1]
fill_top = fill_num // 2
fill_bottom = fill_num - fill_top
img = np.concatenate([np.zeros([fill_top, width, 3]), img, np.zeros([fill_bottom, width, 3])], axis=1)
new_bg_imgs.append(img)
self.bg_imgs = new_bg_imgs
assert all(img.shape[0] == first_bg.shape[0] and img.shape[1] == first_bg.shape[1] for img in self.bg_imgs), "背景图片宽和高不一致"
self.frame_width = self.bg_imgs[0].shape[1]
self.frame_height = self.bg_imgs[0].shape[0]
else:
self.frame_width = frame_width # 窗口宽度
self.frame_height = frame_height # 窗口高度
self.center_x = self.frame_width / 2
self.center_y = self.frame_height / 2
self.main_curve_width = -1
self.main_curve_height = -1
self.frame_points = [] # 每帧动态点坐标
self.frame_num = frame_num # 帧数
self.seed_num = seed_num # 伪随机种子,设置以后除光晕外粒子相对位置不动(减少内部闪烁感)
self.seed_points_num = seed_points_num # 主图粒子数
self.scale = scale # 缩放比例
self.wait = wait
def curve_function(self, curve):
curve_dict = {
"heart": self.heart_function,
"butterfly": self.butterfly_function,
"star": self.star_function,
}
return curve_dict[curve]
def heart_function(self, t, frame_idx=0, scale=5.20):
"""
图形方程
:param frame_idx: 帧的索引,根据帧数变换心形
:param scale: 放大比例
:param t: 参数
:return: 坐标
"""
trans = 3 - (1 + self.periodic_func(frame_idx, self.frame_num)) * 0.5 # 改变心形饱满度度的参数
x = 15 * (np.sin(t) ** 3)
t = np.where((pi < t) & (t < 2 * pi), 2 * pi - t, t) # 翻转x > 0部分的图形到3、4象限
y = -(14 * np.cos(t) - 4 * np.cos(2 * t) - 2 * np.cos(3 * t) - np.cos(trans * t))
ign_area = 0.15
center_ids = np.where((x > -ign_area) & (x < ign_area))
if np.random.random() > 0.32:
x, y = np.delete(x, center_ids), np.delete(y, center_ids) # 删除稠密部分的扩散,为了美观
# 放大
x *= scale
y *= scale
# 移到画布中央
x += self.center_x
y += self.center_y
# 原心形方程
# x = 15 * (sin(t) ** 3)
# y = -(14 * cos(t) - 4 * cos(2 * t) - 2 * cos(3 * t) - cos(3 * t))
return x.astype(int), y.astype(int)
def butterfly_function(self, t, frame_idx=0, scale=5.2):
"""
图形函数
:param frame_idx:
:param scale: 放大比例
:param t: 参数
:return: 坐标
"""
# 基础函数
# t = t * pi
p = np.exp(np.sin(t)) - 2.5 * np.cos(4 * t) + np.sin(t) ** 5
x = 5 * p * np.cos(t)
y = - 5 * p * np.sin(t)
# 放大
x *= scale
y *= scale
# 移到画布中央
x += self.center_x
y += self.center_y
return x.astype(int), y.astype(int)
def star_function(self, t, frame_idx=0, scale=5.2):
n = self.n_star / self.m_star
p = np.cos(pi / n) / np.cos(pi / n - (t % (2 * pi / n)))
x = 15 * p * np.cos(t)
y = 15 * p * np.sin(t)
# 放大
x *= scale
y *= scale
# 移到画布中央
x += self.center_x
y += self.center_y
return x.astype(int), y.astype(int)
def shrink(self, x, y, ratio, offset=1, p=0.5, dist_func="uniform"):
"""
带随机位移的抖动
:param x: 原x
:param y: 原y
:param ratio: 缩放比例
:param p:
:param offset:
:return: 转换后的x,y坐标
"""
x_ = (x - self.center_x)
y_ = (y - self.center_y)
force = 1 / ((x_ ** 2 + y_ ** 2) ** p + 1e-30)
dx = ratio * force * x_
dy = ratio * force * y_
def d_offset(x):
if dist_func == "uniform":
return x + np.random.uniform(-offset, offset, size=x.shape)
elif dist_func == "norm":
return x + offset * np.random.normal(0, 1, size=x.shape)
dx, dy = d_offset(dx), d_offset(dy)
return x - dx, y - dy
def scatter(self, x, y, alpha=0.75, beta=0.15):
"""
随机内部扩散的坐标变换
:param alpha: 扩散因子 - 松散
:param x: 原x
:param y: 原y
:param beta: 扩散因子 - 距离
:return: x,y 新坐标
"""
ratio_x = - beta * np.log(np.random.random(x.shape) * alpha)
ratio_y = - beta * np.log(np.random.random(y.shape) * alpha)
dx = ratio_x * (x - self.center_x)
dy = ratio_y * (y - self.center_y)
return x - dx, y - dy
def periodic_func(self, x, x_num):
"""
跳动周期曲线
:param p: 参数
:return: y
"""
# 可以尝试换其他的动态函数,达到更有力量的效果(贝塞尔?)
def ori_func(t):
return cos(t)
func_period = 2 * pi
return ori_func(x / x_num * func_period)
def gen_points(self, points_num, frame_idx, shape_func):
# 用周期函数计算得到一个因子,用到所有组成部件上,使得各个部分的变化周期一致
cy = self.periodic_func(frame_idx, self.frame_num)
ratio = 10 * cy
# 图形
period = 2 * pi * self.m_star if self.curve == "star" else 2 * pi
seed_points = np.linspace(0, period, points_num)
seed_x, seed_y = shape_func(seed_points, frame_idx, scale=self.scale)
x, y = self.shrink(seed_x, seed_y, ratio, offset=2)
curve_width, curve_height = int(x.max() - x.min()), int(y.max() - y.min())
self.main_curve_width = max(self.main_curve_width, curve_width)
self.main_curve_height = max(self.main_curve_height, curve_height)
point_size = np.random.choice([1, 2], x.shape, replace=True, p=[0.5, 0.5])
tag = np.ones_like(x)
def delete_points(x_, y_, ign_area, ign_prop):
ign_area = ign_area
center_ids = np.where((x_ > self.center_x - ign_area) & (x_ < self.center_x + ign_area))
center_ids = center_ids[0]
np.random.shuffle(center_ids)
del_num = round(len(center_ids) * ign_prop)
del_ids = center_ids[:del_num]
x_, y_ = np.delete(x_, del_ids), np.delete(y_, del_ids) # 删除稠密部分的扩散,为了美观
return x_, y_
# 多层次扩散
for idx, beta in enumerate(np.linspace(0.05, 0.2, 6)):
alpha = 1 - beta
x_, y_ = self.scatter(seed_x, seed_y, alpha, beta)
x_, y_ = self.shrink(x_, y_, ratio, offset=round(beta * 15))
x = np.concatenate((x, x_), 0)
y = np.concatenate((y, y_), 0)
p_size = np.random.choice([1, 2], x_.shape, replace=True, p=[0.55 + beta, 0.45 - beta])
point_size = np.concatenate((point_size, p_size), 0)
tag_ = np.ones_like(x_) * 2
tag = np.concatenate((tag, tag_), 0)
# 光晕
halo_ratio = int(7 + 2 * abs(cy)) # 收缩比例随周期变化
# 基础光晕
x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)
x_1, y_1 = self.shrink(x_, y_, halo_ratio, offset=18, dist_func="uniform")
x_1, y_1 = delete_points(x_1, y_1, 20, 0.5)
x = np.concatenate((x, x_1), 0)
y = np.concatenate((y, y_1), 0)
# 炸裂感光晕
halo_number = int(points_num * 0.6 + points_num * abs(cy)) # 光晕点数也周期变化
seed_points = np.random.uniform(0, 2 * pi, halo_number)
x_, y_ = shape_func(seed_points, frame_idx, scale=self.scale + 0.9)
x_2, y_2 = self.shrink(x_, y_, halo_ratio, offset=int(6 + 15 * abs(cy)), dist_func="norm")
x_2, y_2 = delete_points(x_2, y_2, 20, 0.5)
x = np.concatenate((x, x_2), 0)
y = np.concatenate((y, y_2), 0)
# 膨胀光晕
x_3, y_3 = shape_func(np.linspace(0, 2 * pi, int(points_num * .4)),
frame_idx, scale=self.scale + 0.2)
x_3, y_3 = self.shrink(x_3, y_3, ratio * 2, offset=6)
x = np.concatenate((x, x_3), 0)
y = np.concatenate((y, y_3), 0)
halo_len = x_1.shape[0] + x_2.shape[0] + x_3.shape[0]
p_size = np.random.choice([1, 2, 3], halo_len, replace=True, p=[0.7, 0.2, 0.1])
point_size = np.concatenate((point_size, p_size), 0)
tag_ = np.ones(halo_len) * 2 * 3
tag = np.concatenate((tag, tag_), 0)
x_y = np.around(np.stack([x, y], axis=1), 0)
x, y = x_y[:, 0], x_y[:, 1]
return x, y, point_size, tag
def get_frames(self, shape_func):
for frame_idx in range(self.frame_num):
np.random.seed(self.seed_num)
self.frame_points.append(self.gen_points(self.seed_points_num, frame_idx, shape_func))
frames = []
def add_points(frame, x, y, size, tag):
highlight1 = np.array(self.highlight_points_color_1, dtype='uint8')
highlight2 = np.array(self.highlight_points_color_2, dtype='uint8')
base_col = np.array(self.base_color, dtype='uint8')
x, y = x.astype(int), y.astype(int)
frame[y, x] = base_col
size_2 = np.int64(size == 2)
frame[y, x + size_2] = base_col
frame[y + size_2, x] = base_col
size_3 = np.int64(size == 3)
frame[y + size_3, x] = base_col
frame[y - size_3, x] = base_col
frame[y, x + size_3] = base_col
frame[y, x - size_3] = base_col
frame[y + size_3, x + size_3] = base_col
frame[y - size_3, x - size_3] = base_col
# frame[y - size_3, x + size_3] = color
# frame[y + size_3, x - size_3] = color
# 高光
random_sample = np.random.choice([1, 0], size=tag.shape, p=[self.highlight_rate, 1 - self.highlight_rate])
# tag2_size1 = np.int64((tag <= 2) & (size == 1) & (random_sample == 1))
# frame[y * tag2_size1, x * tag2_size1] = highlight2
tag2_size2 = np.int64((tag <= 2) & (size == 2) & (random_sample == 1))
frame[y * tag2_size2, x * tag2_size2] = highlight1
# frame[y * tag2_size2, (x + 1) * tag2_size2] = highlight2
# frame[(y + 1) * tag2_size2, x * tag2_size2] = highlight2
frame[(y + 1) * tag2_size2, (x + 1) * tag2_size2] = highlight2
for x, y, size, tag in self.frame_points:
frame = np.zeros([self.frame_height, self.frame_width, 3], dtype="uint8")
add_points(frame, x, y, size, tag)
frames.append(frame)
return frames
def draw(self, times=10):
frames = self.get_frames(self.curve_function(self.curve))
for i in range(times):
for frame in frames:
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
if len(self.bg_imgs) > 0 and self.set_bg_imgs:
frame = cv2.addWeighted(self.bg_imgs[i % len(self.bg_imgs)], self.bg_weight, frame, self.curve_weight, 0)
cv2.imshow(self.title, frame)
cv2.waitKey(self.wait)
if __name__ == '__main__':
import yaml
settings = yaml.load(open("./settings.yaml", "r", encoding="utf-8"), Loader=yaml.FullLoader)
if settings["wait"] == -1:
settings["wait"] = int(settings["period_time"] / settings["frame_num"])
del settings["period_time"]
times = settings["times"]
del settings["times"]
heart = HeartSignal(seed_num=5201314, **settings)
heart.draw(times)
其中也要到这个py文件的相同的文件夹里引入settings.yaml文件:
# 颜色:RGB三原色数值 0~255
# 设置高光时,尽量选择接近主色的颜色,看起来会和谐一点
# 视频里的蓝色调
#base_color: # 主色 默认玫瑰粉
# - 30
# - 100
# - 100
#highlight_points_color_1: # 高光粒子色1 默认淡紫色
# - 150
# - 120
# - 220
#highlight_points_color_2: # 高光粒子色2 默认淡粉色
# - 128
# - 140
# - 140
base_color: # 主色 默认玫瑰粉
- 228
- 100
- 100
highlight_points_color_1: # 高光粒子色1 默认淡紫色
- 180
- 87
- 200
highlight_points_color_2: # 高光粒子色2 默认淡粉色
- 228
- 140
- 140
period_time: 1000 * 2 # 周期时间,默认1.5s一个周期
times: 5 # 播放周期数,一个周期跳动1次
frame_num: 24 # 一个周期的生成帧数
wait: 60 # 每一帧停留时间, 设置太短可能造成闪屏,设置 -1 自动设置为 period_time / frame_num
seed_points_num: 2000 # 构成主图的种子粒子数,总粒子数是这个的8倍左右(包括散点和光晕)
highlight_rate: 0.2 # 高光粒子的比例
frame_width: 720 # 窗口宽度,单位像素,设置背景图片后失效
frame_height: 640 # 窗口高度,单位像素,设置背景图片后失效
scale: 9.1 # 主图缩放比例
curve: "butterfly" # 图案类型:heart, butterfly, star
n_star: 7 # n-角型/星,如果curve设置成star才会生效,五角星:n-star:5, m-star:2
m_star: 3 # curve设置成star才会生效,n-角形 m-star都是1,n-角星 m-star大于1,比如 七角星:n-star:7, m-star:2 或 3
title: "Love Li Xun" # 仅支持字母,中文乱码
background_img_dir: "src/center_imgs" # 这个目录放置背景图片,建议像素在400 X 400以上,否则可能报错,如果图片实在小,可以调整上面scale把爱心缩小
set_bg_imgs: false # true或false,设置false用默认黑背景
bg_img_scale: 0.6 # 0 - 1,背景图片缩放比例
bg_weight: 0.4 # 0 - 1,背景图片权重,可看做透明度吧
curve_weight: 1 # 同上
# ======================== 推荐参数: 直接复制数值替换上面对应参数 ==================================
# 蝴蝶,报错很可能是蝴蝶缩放大小超出窗口宽和高
# curve: "butterfly"
# frame_width: 800
# frame_height: 720
# scale: 60
# base_color: [100, 100, 228]
# highlight_points_color_1: [180, 87, 200]
# highlight_points_color_2: [228, 140, 140]
本代码是搬运github上的:
网址如下:
https://github.com/131250208/FunnyToys/blob/main/heart.py
演示:
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj