首页 > Python资料 博客日记
对称加密算法——DES算法(包含Python、C、Java语言代码实现)
2024-11-02 16:00:07Python资料围观62次
一、算法原理
DES(数据加密标准)算法对明文数据进行16轮的替换和置换操作,每一轮都会生成一个不同的子密钥,并依次对数据块进行操作。
每一轮的加密过程
DES的每一轮都将64位的明文分为两个部分:左半部分(32位)和右半部分(32位)。加密操作实际上只对右半部分进行变换,而左半部分则直接参与异或运算。具体步骤如下:
1. 初始分组
- 将64位明文经过初始置换(Initial Permutation, IP),重新排列位的顺序,得到新的64位数据,并将其分为左右两部分:
- 左半部分:L₀(32位)
- 右半部分:R₀(32位)
2. 16轮迭代加密
每一轮都会使用不同的子密钥 (K_i),并将当前轮的左半部分 (L_i) 和右半部分 (R_i) 进行如下操作:
-
步骤 1:将前一轮的右半部分 (R_{i-1}) 作为这一轮的新左半部分,即:
L_i = R_{i-1}
-
步骤 2:将前一轮的右半部分 (R_{i-1}) 送入 F函数,并与当前轮的子密钥 (K_i) 进行操作。F函数的详细步骤见后续。F函数的输出结果与前一轮的左半部分 (L_{i-1}) 进行异或运算,生成这一轮的新右半部分 (R_i),即:
R_i = L_{i-1} ⊕ F(R_{i-1}, K_i) -
步骤 3:继续进行下一轮。经过16轮后,左半部分和右半部分合并,形成64位的加密数据。
在每一轮操作中,左右两部分交换一次位置,从而保证密文与明文之间的复杂关系。
3. F函数(核心加密步骤)
F函数是DES算法中的关键步骤,用于生成复杂的加密结果。F函数将32位的右半部分 (R_{i-1}) 和48位的子密钥 (K_i) 结合起来,具体操作如下:
-
扩展置换(E扩展):
32位的右半部分 (R_{i-1}) 经过扩展置换操作,变成48位,扩展时根据一定的规则重复某些位。这一步的作用是增加密文的混淆性,并使其与48位的子密钥 (K_i) 进行异或操作。 -
异或运算:
将扩展后的48位数据与48位的子密钥 (K_i) 进行异或运算,得到48位的新数据。 -
S盒替代:
将48位数据分成8组,每组6位(48位/6),然后使用8个不同的S盒(Substitution box,替代盒)对每组6位进行替代。S盒的作用是将6位的输入转化为4位的输出,从而将48位数据变成32位。每个S盒都有一个特定的查表,用于根据输入的6位值确定输出的4位值。S盒是DES中最重要的非线性变换步骤,是加密过程产生混淆的关键。
-
置换操作(P盒置换):
对S盒替代后的32位输出进行置换操作,将数据位重新排列,增加混淆性。经过这一置换操作后,得到最终的32位输出结果。
F函数的输出与当前轮的左半部分进行异或运算,完成这一轮的加密。
4. 16轮加密结束
在完成16轮加密后,得到两个部分:左半部分 (L_{16}) 和右半部分 (R_{16})。此时将这两个部分组合在一起,并进行逆初始置换(Inverse Initial Permutation, IP⁻¹),得到最终的64位密文。
密钥生成过程
DES使用的是一个56位的主密钥(尽管输入是64位的,但其中每8位用于校验,只留下56位用于实际加密),然后通过一系列的位移和置换操作,从这个主密钥中生成16个子密钥,每个子密钥长度为48位。
-
去掉奇偶校验位:
虽然输入的密钥是64位,但每8位中的第8位是奇偶校验位。因此,首先需要将64位的密钥中的校验位去除,剩下56位用于密钥生成。 -
密钥置换选择 1(PC-1):
对去除校验位后的56位密钥进行第一次置换,称为置换选择1(Permutation Choice 1,PC-1)。PC-1会根据固定规则重新排列这56位密钥,将其分为两部分:左半部分 (C_0) 和右半部分 (D_0),每部分28位。初始56位密钥 -> PC-1 -> 28位的 C_0 和 28位的 D_0
-
左移操作:
在每一轮加密开始时,都会对(C_0) 和 (D_0) 进行左移操作。左移的位数不是固定的,而是根据当前轮次决定的。具体来说,每一轮的左移位数如下:- 第1、2、9、16轮:左移1位
- 其他轮:左移2位
每一轮左移后的值会生成新的 (C_i) 和 (D_i)。
注意是循环左移
C_0, D_0 -> 左移 -> C_1, D_1 -> 左移 -> C_2, D_2 -> …… -> C_16, D_16
-
密钥置换选择 2(PC-2):
左移之后,将 (C_i) 和 (D_i) 组合成56位的密钥,然后使用置换选择2(Permutation Choice 2,PC-2)将这56位压缩为48位。这是通过从56位中选择48位进行排列完成的。PC-2的目的是通过重新选择位的位置并减少位数来生成本轮的子密钥 (K_i)(48位)。56位的 C_i + D_i -> PC-2 -> 48位的子密钥 K_i
-
生成16个子密钥:
通过左移和置换选择2的操作,DES一共会生成16个不同的48位子密钥 (K_1, K_2, …, K_{16}),分别用于每一轮的加密运算。
二、代码实例
1.Python版
# 将十六进制字符串转为二进制字符串
def hex_to_bin(hex_str):
bin_str = bin(int(hex_str, 16))[2:].zfill(len(hex_str) * 4)
return bin_str
# 将二进制字符串转为十六进制字符串
def bin_to_hex(bin_str):
hex_str = hex(int(bin_str, 2))[2:].upper().zfill(len(bin_str) // 4)
return hex_str
# DES初始置换表
IP = [58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7]
# 逆初始置换表
IP_INV = [40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25]
# 扩展置换表
E = [32, 1, 2, 3, 4, 5, 4, 5,
6, 7, 8, 9, 8, 9, 10, 11,
12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27,
28, 29, 28, 29, 30, 31, 32, 1]
# S盒表
S_BOX = [
# S1
[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]],
# S2
[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]],
# S3
[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]],
# S4
[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]],
# S5
[[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]],
# S6
[[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]],
# S7
[[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12]],
# S8
[[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11]],
]
# P盒置换表
P_BOX = [16, 7, 20, 21, 29, 12, 28, 17,
1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25]
# 置换选择1(PC-1)表
PC_1 = [57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4]
# 置换选择2(PC-2)表
PC_2 = [14, 17, 11, 24, 1, 5, 3, 28,
15, 6, 21, 10, 23, 19, 12, 4,
26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40,
51, 45, 33, 48, 44, 49, 39, 56,
34, 53, 46, 42, 50, 36, 29, 32]
# 子密钥生成左移位数
SHIFT_SCHEDULE = [1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1]
# 将输入密钥转为64位,并去除校验位得到56位密钥
def key_permutation(key):
# key = hex_to_bin(key)
print('密钥的key:', key)
key = ''.join(key[i - 1] for i in PC_1)
return key[:28], key[28:]
# 左移操作
def left_shift(key, shifts):
return key[shifts:] + key[:shifts]
# 根据C和D生成子密钥
def generate_subkeys(C, D):
subkeys = []
for shift in SHIFT_SCHEDULE:
C = left_shift(C, shift)
D = left_shift(D, shift)
subkey = C + D
# 这里也就是在PC_2的列表为下标,看subkey[i]是什么,全部赋值完后,加入到新的subkey中
subkey = ''.join(subkey[i - 1] for i in PC_2)
subkeys.append(subkey)
return subkeys
# 执行初始置换和逆置换
def permute(data, table):
return ''.join(data[i - 1] for i in table)
# 加密的核心f函数,包括扩展置换E、S盒和P盒
def f_function(R, K):
# 1. 扩展置换
R = ''.join(R[i - 1] for i in E)
# 2. 与子密钥K进行异或 字符格式转换 int(K, 2)
R = bin(int(R, 2) ^ int(K, 2))[2:].zfill(48)
# 3. 经过S盒压缩
result = ''
for i in range(8):
block = R[i * 6:(i + 1) * 6]
row = int(block[0] + block[5], 2)
col = int(block[1:5], 2)
result += bin(S_BOX[i][row][col])[2:].zfill(4)
# 4. 经过P盒置换
result = ''.join(result[i - 1] for i in P_BOX)
return result
# DES加密函数
def des_encrypt(plaintext, key):
# 1. 初始置换
plaintext = permute(plaintext, IP)
# 初始置换后的输出
print('初始置换后的输出:', plaintext)
# 2. 分成左右两部分
L, R = plaintext[:32], plaintext[32:]
print("R的值为:", R)
# 生成16轮子密钥
C, D = key_permutation(key) # 去掉奇偶校验位
subkeys = generate_subkeys(C, D) # 使用列表将每一层密钥存储起来
# 利用enumerate()函数,遍历密钥列表
for i, subkey in enumerate(subkeys, 1):
print(f"第{i}轮子密钥: {bin_to_hex(subkey)}")
# 3. 进行16轮加密
for i in range(16):
L_new = R
# 查看下变换前L的值
if i == 0:
print("第1轮的L变换前的值为:", L)
R_new = bin(int(L, 2) ^ int(f_function(R, subkeys[i]), 2))[2:].zfill(32)
L, R = L_new, R_new
if i == 0:
print("第1轮的R_new的值为:", R_new)
print(f"第1轮输出: L = {bin_to_hex(L)}, R = {bin_to_hex(R)}")
# 4. 合并L和R,逆初始置换
combined = R + L
ciphertext = permute(combined, IP_INV)
return bin_to_hex(ciphertext)
# 主函数
if __name__ == "__main__":
plaintext = "0123456789ABCDEF"
key = "133457799BBCDFF1"
# 转为二进制
plaintext_bin = hex_to_bin(plaintext)
key_bin = hex_to_bin(key)
print("明文的二进制:",plaintext_bin)
print("密钥的二进制:", key_bin)
# 加密
ciphertext = des_encrypt(plaintext_bin, key_bin)
print(f"最终密文: {ciphertext}")
2.C语言版
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BLOCK_SIZE 64
// IP置换表
int IP[] = {58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7};
// 逆初始置换表
int IP_INV[] = {40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25};
// E扩展置换表
int E[] = {32, 1, 2, 3, 4, 5, 4, 5,
6, 7, 8, 9, 8, 9, 10, 11,
12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27,
28, 29, 28, 29, 30, 31, 32, 1};
// S盒表
int S_BOX[8][4][16] = {
// S1
{{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
{0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
{4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
{15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}},
// S2
{{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
{3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
{0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
{13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}},
// S3
{{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
{13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
{1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}},
// S4
{{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
{13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
{10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
{3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}},
// S5
{{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
{14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
{4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
{11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}},
// S6
{{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11},
{10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
{9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
{4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}},
// S7
{{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
{13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},
{1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},
{6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}},
// S8
{{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},
{1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
{7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},
{2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}}
};
// P置换表
int P_BOX[] = {16, 7, 20, 21, 29, 12, 28, 17,
1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25};
// 左移位数表
int SHIFT_SCHEDULE[] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
// 置换选择1(PC-1)表
int PC_1[] = {57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4};
// 置换选择2(PC-2)表
int PC_2[] = {14, 17, 11, 24, 1, 5, 3, 28,
15, 6, 21, 10, 23, 19, 12, 4,
26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40,
51, 45, 33, 48, 44, 49, 39, 56,
34, 53, 46, 42, 50, 36, 29, 32};
// 将十六进制字符串转换为二进制字符串
void hex_to_bin(char *hex_str, char *bin_str) {
char *p = hex_str;
while (*p) {
switch (*p) {
case '0': strcat(bin_str, "0000"); break;
case '1': strcat(bin_str, "0001"); break;
case '2': strcat(bin_str, "0010"); break;
case '3': strcat(bin_str, "0011"); break;
case '4': strcat(bin_str, "0100"); break;
case '5': strcat(bin_str, "0101"); break;
case '6': strcat(bin_str, "0110"); break;
case '7': strcat(bin_str, "0111"); break;
case '8': strcat(bin_str, "1000"); break;
case '9': strcat(bin_str, "1001"); break;
case 'A': strcat(bin_str, "1010"); break;
case 'B': strcat(bin_str, "1011"); break;
case 'C': strcat(bin_str, "1100"); break;
case 'D': strcat(bin_str, "1101"); break;
case 'E': strcat(bin_str, "1110"); break;
case 'F': strcat(bin_str, "1111"); break;
}
p++;
// printf("plaintext_bin:%s, p:%s \n", bin_str, p);
}
}
// 左移操作
void left_shift(char *key, int shifts) {
char temp[28];
strncpy(temp, key, shifts);
memmove(key, key + shifts, 28 - shifts);
strncpy(key + 28 - shifts, temp, shifts);
}
// 二进制转换成十六进制
void bin_to_hex(const char *bin_str) {
int len = strlen(bin_str);
int hex_index = 0;
char hex_str[len];
// 每4个二进制位转换为1个十六进制位
for (int i = 0; i < len; i += 4) {
int value = 0;
// 计算当前4位的二进制值
for (int j = 0; j < 4; j++) {
if (bin_str[i + j] == '1') {
value += (1 << (3 - j)); // 根据位置计算值
}
}
// 将计算的值转换为十六进制字符
if (value < 10) {
hex_str[hex_index++] = '0' + value; // 数字
} else {
hex_str[hex_index++] = 'A' + (value - 10); // 字母
}
}
hex_str[hex_index] = '\0'; // 添加字符串结束符
printf("加密后的密文(十六进制):%s\n", hex_str);
}
// 生成子密钥
void generate_subkeys(char *key, char subkeys[16][48]) {
char C[28], D[28];
char permuted_key[56];
// 进行PC-1置换
for (int i = 0; i < 56; i++) {
permuted_key[i] = key[PC_1[i] - 1];
}
// 分割C和D
strncpy(C, permuted_key, 28);
strncpy(D, permuted_key + 28, 28);
// 生成子密钥
for (int i = 0; i < 16; i++) {
left_shift(C, SHIFT_SCHEDULE[i]);
left_shift(D, SHIFT_SCHEDULE[i]);
// 合并C和D并进行PC-2置换
char CD[56];
strncpy(CD, C, 28);
strncpy(CD + 28, D, 28);
for (int j = 0; j < 48; j++) {
subkeys[i][j] = CD[PC_2[j] - 1];
}
printf("subkeys[%d]:%s\n", i, subkeys[i]);
bin_to_hex(subkeys[i]);
}
}
// 逆初始置换
void inverse_permutation(char *data, char *perm_data) {
for (int i = 0; i < 64; i++) {
perm_data[i] = data[IP_INV[i] - 1];
}
}
// E扩展置换
void expansion(char *data, char *expanded_data) {
for (int i = 0; i < 48; i++) {
expanded_data[i] = data[E[i] - 1];
}
expanded_data[48] = '\0'; // 添加终止字符
}
void int_to_bin_str(int value, char *bin_str) {
for (int i = 3; i >= 0; i--) {
bin_str[i] = (value % 2) + '0'; // 将二进制位转换为字符
value /= 2;
}
bin_str[4] = '\0'; // 确保字符串以 null 结束
}
// S盒替换
void sbox_substitution(char *data, char *sbox_output) {
sbox_output[0] = '\0'; // 初始化输出字符串
for (int i = 0; i < 8; i++) {
int row = 2 * (data[6 * i] - '0') + (data[6 * i + 5] - '0'); // 计算行
int col = 8 * (data[6 * i + 1] - '0') + 4 * (data[6 * i + 2] - '0') +
2 * (data[6 * i + 3] - '0') + (data[6 * i + 4] - '0'); // 计算列
int sbox_value = S_BOX[i][row][col]; // 从 S 盒获取值
char sbox_bin[5];
int_to_bin_str(sbox_value, sbox_bin); // 将 S 盒输出值转换为二进制字符串
strncat(sbox_output, sbox_bin, 4); // 连接到输出字符串
}
}
// P置换
void p_permutation(char *data, char *perm_data) {
for (int i = 0; i < 32; i++) {
perm_data[i] = data[P_BOX[i] - 1];
}
perm_data[32] = '\0'; // 添加终止字符
}
// 轮函数F
void f_function(char *right, char *subkey, char *output) {
char expanded_right[48] = {0};
expansion(right, expanded_right); // 扩展E
printf("expanded_right: %s\n", expanded_right);
// 与子密钥进行异或操作
for (int i = 0; i < 48; i++) {
expanded_right[i] = ((expanded_right[i] - '0') ^ (subkey[i] - '0')) + '0';
}
printf("expanded_right异或后的: %s\n", expanded_right);
// 通过S盒替换
char sbox_output[32] = {0};
sbox_substitution(expanded_right, sbox_output);
printf("expanded_rights盒sbox_output后的: %s\n", sbox_output);
// 通过P置换
p_permutation(sbox_output, output);
}
// 初始置换
void initial_permutation(char *data, char *perm_data) {
memset(perm_data, 0, 64); // 确保初始化为全0
for (int i = 0; i < 64; i++) {
perm_data[i] = data[IP[i] - 1];
// printf("perm_data length: %d\n", strlen(perm_data));
}
// 打印perm_data的长度
printf("perm_data length: %d\n", perm_data[64]);
}
// 16轮迭代加密
void des_encrypt(char *plaintext, char subkeys[16][48], char *ciphertext) {
char permuted_text[64] = {0};
initial_permutation(plaintext, permuted_text); // 初始置换
char left[33] = {0}, right[33] = {0};
strncpy(left, permuted_text, 32);
strncpy(right, permuted_text + 32, 32);
// printf("permuted_text_length: %d\n", strlen(permuted_text));
printf("permuted_left: %s\n", left);
printf("permuted_right: %s\n", right);
char f_result[33] = {0}, temp[33] = {0};
for (int i = 0; i < 16; i++) {
strncpy(temp, right, 32);
f_function(right, subkeys[i], f_result); // 计算F函数
printf("f_result: %s\n", f_result);
// 左边与F结果进行异或
for (int j = 0; j < 32; j++) {
right[j] = ((left[j] - '0') ^ (f_result[j] - '0')) + '0';
}
printf("f_result: %s\n", f_result);
strncpy(left, temp, 32);
}
// 合并左右部分
char combined[64] = {0};
strncpy(combined, right, 32);
strncat(combined, left, 32);
// 逆初始置换
inverse_permutation(combined, ciphertext);
}
// DES加密主函数
void des_main(char *plaintext_hex, char *key_hex, char *ciphertext_hex) {
char plaintext_bin[65] = {0};
char key_bin[65] = {0};
char ciphertext_bin[65] = {0};
char subkeys[16][48] = {0};
printf("plaintext_bin进入前:%s\n", plaintext_bin);
printf("plaintext_hex:%s\n",plaintext_hex);
hex_to_bin(plaintext_hex, plaintext_bin); // 明文转换为二进制
printf("plaintext_bin进入后:%s\n", plaintext_bin);
printf("key_bin进入前:%s\n", key_bin);
hex_to_bin(key_hex, key_bin); // 密钥转换为二进制
printf("key_bin进入后:%s\n", key_bin);
printf("key_bin total:%d\n", strlen(key_bin));
generate_subkeys(key_bin, subkeys); // 生成16轮子密钥
des_encrypt(plaintext_bin, subkeys, ciphertext_bin); // 执行加密
printf("加密后的密文(二进制):%s\n", ciphertext_bin);
bin_to_hex(ciphertext_bin);
}
int main() {
char plaintext[] = "0123456789ABCDEF";
char key[] = "133457799BBCDFF1";
char ciphertext[17] = {0};
des_main(plaintext, key, ciphertext);
return 0;
}
3.Java版
package bean;
import java.util.Arrays;
import org.w3c.dom.ls.LSOutput;
public class DES {
private static final int BLOCK_SIZE = 64;
// IP 置换表
private static final int[] IP = {58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7};
// 逆初始置换表
private static final int[] IP_INV = {40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25};
// E 扩展置换表
private static final int[] E = {32, 1, 2, 3, 4, 5, 4, 5,
6, 7, 8, 9, 8, 9, 10, 11,
12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27,
28, 29, 28, 29, 30, 31, 32, 1};
// S 盒表
private static final int[][][] S_BOX = {
{{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
{0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
{4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
{15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}},
{{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
{3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
{0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
{13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}},
{{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
{13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
{13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
{1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}},
{{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
{13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
{10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
{3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}},
{{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
{14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
{4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
{11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}},
{{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11},
{10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
{9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
{4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}},
{{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
{13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},
{1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},
{6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}},
{{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},
{1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
{7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},
{2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}}
};
// P 置换表
private static final int[] P_BOX = {16, 7, 20, 21, 29, 12, 28, 17,
1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9,
19, 13, 30, 6, 22, 11, 4, 25};
// PC-1 和 PC-2 置换表
private static final int[] PC_1 = {57, 49, 41, 33, 25, 17, 9, 1,
58, 50, 42, 34, 26, 18, 10, 2,
59, 51, 43, 35, 27, 19, 11, 3,
60, 52, 44, 36, 63, 55, 47, 39,
31, 23, 15, 7, 62, 54, 46, 38,
30, 22, 14, 6, 61, 53, 45, 37,
29, 21, 13, 5, 28, 20, 12, 4,
27, 19, 11, 3, 26, 18, 10, 2};
private static final int[] PC_2 = {14, 17, 11, 24, 1, 5, 3, 28,
15, 6, 21, 10, 23, 19, 12, 4,
26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40,
51, 45, 33, 48, 44, 49, 39, 56,
34, 53, 46, 42, 50, 36, 29, 32};
private static final int[] SHIFT_SCHEDULE = {1, 1, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 1};
// 将十六进制字符串转换为二进制字符串
public static String hexToBin(String hexStr) {
StringBuilder binStr = new StringBuilder();
for (char ch : hexStr.toCharArray()) {
switch (ch) {
case '0': binStr.append("0000"); break;
case '1': binStr.append("0001"); break;
case '2': binStr.append("0010"); break;
case '3': binStr.append("0011"); break;
case '4': binStr.append("0100"); break;
case '5': binStr.append("0101"); break;
case '6': binStr.append("0110"); break;
case '7': binStr.append("0111"); break;
case '8': binStr.append("1000"); break;
case '9': binStr.append("1001"); break;
case 'A': binStr.append("1010"); break;
case 'B': binStr.append("1011"); break;
case 'C': binStr.append("1100"); break;
case 'D': binStr.append("1101"); break;
case 'E': binStr.append("1110"); break;
case 'F': binStr.append("1111"); break;
}
}
return binStr.toString();
}
// 左移操作
// private static String leftShift(String key, int shifts) {
// String temp = key.substring(0, shifts);
// key = key.substring(shifts) + temp;
// return key;
// }
//左移操作
private static String leftShift(String key, int shifts) {
// 左移操作
return key.substring(shifts) + key.substring(0, shifts);
}
// 二进制转换成十六进制
public static String binToHex(String binStr) {
StringBuilder hexStr = new StringBuilder();
int len = binStr.length();
for (int i = 0; i < len; i += 4) {
int value = Integer.parseInt(binStr.substring(i, i + 4), 2);
if (value < 10) {
hexStr.append(value);
} else {
hexStr.append((char) ('A' + (value - 10)));
}
}
return hexStr.toString();
}
// 生成子密钥
public static String[] generateSubkeys(String key) {
String[] subkeys = new String[16];
StringBuilder permutedKey = new StringBuilder(56);
// 进行PC-1置换
for (int i = 0; i < 56; i++) {
permutedKey.append(key.charAt(PC_1[i] - 1));
}
// 打印permutedKey的长度
System.out.printf("permutedKey: %s\n", permutedKey);
// 分割C和D
String C = permutedKey.substring(0, 28);
String D = permutedKey.substring(28);
System.out.printf("permutedKey C: %s\n", C);
System.out.printf("permutedKey D: %s\n", D);
// 生成子密钥
for (int i = 0; i < 16; i++) {
// 左移
C = leftShift(C, SHIFT_SCHEDULE[i]);
D = leftShift(D, SHIFT_SCHEDULE[i]);
System.out.printf("permutedKey C左移: %s\n", C);
System.out.printf("permutedKey D左移: %s\n", D);
// 合并C和D并进行PC-2置换
StringBuilder CD = new StringBuilder(C).append(D);
System.out.printf("permutedKey CD: %s\n", CD);
StringBuilder subkey = new StringBuilder(48);
// 进行PC-2置换
for (int j = 0; j < 48; j++) {
subkey.append(CD.charAt(PC_2[j] - 1));
}
subkeys[i] = subkey.toString();
System.out.printf("subkeys[%d]: %s\n", i, subkeys[i]);
System.out.printf("第%d次加密后的密钥(十六进制):%s\n", i+1,binToHex(subkeys[i]));
}
return subkeys;
}
// 逆初始置换
public static String inversePermutation(String data) {
StringBuilder permData = new StringBuilder(64);
for (int i = 0; i < 64; i++) {
permData.append(data.charAt(IP_INV[i] - 1));
}
return permData.toString();
}
// E扩展置换
public static String expansion(String data) {
StringBuilder expandedData = new StringBuilder(48);
for (int i = 0; i < 48; i++) {
expandedData.append(data.charAt(E[i] - 1));
}
return expandedData.toString();
}
// S盒替换
public static String sboxSubstitution(String data) {
StringBuilder sboxOutput = new StringBuilder();
for (int i = 0; i < 8; i++) {
int row = 2 * (data.charAt(6 * i) - '0') + (data.charAt(6 * i + 5) - '0');
int col = 8 * (data.charAt(6 * i + 1) - '0') + 4 * (data.charAt(6 * i + 2) - '0')
+ 2 * (data.charAt(6 * i + 3) - '0') + (data.charAt(6 * i + 4) - '0');
int sboxValue = S_BOX[i][row][col];
String sboxBin = String.format("%4s", Integer.toBinaryString(sboxValue)).replace(' ', '0');
sboxOutput.append(sboxBin);
}
return sboxOutput.toString();
}
// P置换
public static String pPermutation(String data) {
StringBuilder permData = new StringBuilder(32);
for (int i = 0; i < 32; i++) {
permData.append(data.charAt(P_BOX[i] - 1));
}
return permData.toString();
}
// 轮函数F
public static String fFunction(String right, String subkey) {
String expandedRight = expansion(right);
StringBuilder xorResult = new StringBuilder(48);
// 与子密钥进行异或操作
for (int i = 0; i < 48; i++) {
xorResult.append((char) ((expandedRight.charAt(i) - '0') ^ (subkey.charAt(i) - '0') + '0'));
}
// 通过S盒替换
String sboxOutput = sboxSubstitution(xorResult.toString());
// 通过P置换
return pPermutation(sboxOutput);
}
// 初始置换
public static String initialPermutation(String data) {
StringBuilder permData = new StringBuilder(64);
for (int i = 0; i < 64; i++) {
permData.append(data.charAt(IP[i] - 1));
}
return permData.toString();
}
// 16轮迭代加密
public static String desEncrypt(String plaintext, String[] subkeys) {
String permutedText = initialPermutation(plaintext);
String left = permutedText.substring(0, 32);
String right = permutedText.substring(32);
for (int i = 0; i < 16; i++) {
String temp = right;
String fResult = fFunction(right, subkeys[i]);
System.out.printf("fResult右边经过F函数:%s\n", fResult);
// 左边与F结果进行异或
StringBuilder newRight = new StringBuilder(32);
for (int j = 0; j < 32; j++) {
newRight.append((char) ((left.charAt(j) - '0') ^ (fResult.charAt(j) - '0') + '0'));
}
right = newRight.toString();
left = temp;
String combine = right + left;
// System.out.printf("加密后的密文(十六进制):%s\n", binToHex(combine));
System.out.printf("第%d次加密后的密文(十六进制):%s\n", i+1,binToHex(combine));
}
// 合并左右部分
String combined = right + left;
return inversePermutation(combined);
}
// DES加密主函数
public static void desMain(String plaintextHex, String keyHex) {
String plaintextBin = hexToBin(plaintextHex); // 明文转换为二进制
String keyBin = hexToBin(keyHex); // 密钥转换为二进制
// System.out.printf("加密后的密文(二进制):%s\n", keyBin);
String[] subkeys = generateSubkeys(keyBin); // 生成16轮子密钥
String ciphertextBin = desEncrypt(plaintextBin, subkeys); // 执行加密
System.out.printf("加密后的密文(二进制):%s\n", ciphertextBin);
System.out.printf("加密后的密文(十六进制):%s\n", binToHex(ciphertextBin));
}
public static void main(String[] args) {
String plaintext = "0123456789ABCDEF";
String key = "133457799BBCDFF1"; // 64位密钥
desMain(plaintext, key);
}
}
下面这个链接是结合例子讲解的,讲的不错
链接: DES加密算法介绍(含例子)
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程