首页 > Python资料 博客日记
人脸修复祛马赛克算法CodeFormer——C++与Python模型部署
2024-03-06 21:00:06Python资料围观308次
一、人脸修复算法
1.算法简介
CodeFormer是一种基于AI技术深度学习的人脸复原模型,由南洋理工大学和商汤科技联合研究中心联合开发,它能够接收模糊或马赛克图像作为输入,并生成更清晰的原始图像。算法源码地址:https://github.com/sczhou/CodeFormer
这种技术在图像修复、图像增强和隐私保护等领域可能会有广泛的应用。算法是由南洋理工大学和商汤科技联合研究中心联合开发的,结合了VQGAN和Transformer。
VQGAN是一个生成模型,通常用于图像生成任务。它使用了向量量化技术,将图像编码成一系列离散的向量,然后通过解码器将这些向量转化为图像。这种方法通常能够生成高质量的图像,尤其在与Transformer等神经网络结合使用时。
Transformer是一种广泛用于自然语言处理和计算机视觉等领域的神经网络架构。它在序列数据处理中表现出色,也可以用于图像生成和处理任务。
在监控、安全和隐私保护领域,人脸图像通常会受到多种因素的影响,其中包括光照、像素限制、聚焦问题和人体运动等。这些因素可能导致图像模糊、变形或者包含大量的噪声。在这种情况下,尝试恢复清晰的原始人脸图像是一个极具挑战性的任务。
盲人脸复原是一个不适定问题(ill-posed problem),这意味着存在多个可能的解决方案,而且从有限的观察数据中无法唯一确定真实的原始图像。因此,在这个领域中,通常需要依赖先进的计算机视觉和图像处理技术,以及深度学习模型,来尝试改善模糊或受损图像的质量。
一些方法和技术可以用于处理盲人脸复原问题,包括但不限于:
深度学习模型: 使用卷积神经网络(CNN)和生成对抗网络(GAN)等深度学习模型,可以尝试从模糊或变形的人脸图像中恢复原始细节。
超分辨率技术: 超分辨率方法旨在从低分辨率图像中重建高分辨率图像,这也可以用于人脸图像复原。
先验知识: 利用先验知识,如人脸结构、光照模型等,可以帮助提高复原的准确性。
多模态融合: 结合不同传感器和信息源的数据,可以提高复原的鲁棒性。
然而,即使使用这些技术,由于问题的不适定性,完全恢复清晰的原始人脸图像仍然可能是一项极具挑战性的任务,特别是在极端条件下。在实际应用中,可能需要权衡图像质量和可用的信息,以达到最佳的结果。
2.算法效果
在官方公布修复的人脸效果里面,可以看到算法在各种输入的修复效果:
老照片修复
人脸修复
黑白人脸图像增强修复
人脸恢复
二、模型部署
如果想用C++进行模型推理部署,首先要把模型转换成onnx,转成onnx就可以使用onnxruntime c++库进行部署,或者使用OpenCV的DNN也可以,转成onnx后,还可以再转成ncnn模型使用ncnn进行模型部署。原模型可以从官方开源界面可以下载。
模型推理这块有两种做法,一是不用判断有没有人脸,直接对全图进行超分,但这种方法好像对本来是清晰的图像会出现bug,就是生成一些无法理解的处理。
1. C++使用onnxruntime部署模型
#include "CodeFormer.h"
CodeFormer::CodeFormer(std::string model_path)
{
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); ///nvidia-cuda加速
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
std::wstring widestr = std::wstring(model_path.begin(), model_path.end()); ///如果在windows系统就这么写
ort_session = new Ort::Session(env, widestr.c_str(), sessionOptions); ///如果在windows系统就这么写
///ort_session = new Session(env, model_path.c_str(), sessionOptions); ///如果在linux系统,就这么写
size_t numInputNodes = ort_session->GetInputCount();
size_t numOutputNodes = ort_session->GetOutputCount();
Ort::AllocatorWithDefaultOptions allocator;
for (int i = 0; i < numInputNodes; i++)
{
input_names.push_back(ort_session->GetInputName(i, allocator));
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto input_dims = input_tensor_info.GetShape();
input_node_dims.push_back(input_dims);
}
for (int i = 0; i < numOutputNodes; i++)
{
output_names.push_back(ort_session->GetOutputName(i, allocator));
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
this->inpHeight = input_node_dims[0][2];
this->inpWidth = input_node_dims[0][3];
this->outHeight = output_node_dims[0][2];
this->outWidth = output_node_dims[0][3];
input2_tensor.push_back(0.5);
}
void CodeFormer::preprocess(cv::Mat &srcimg)
{
cv::Mat dstimg;
cv::cvtColor(srcimg, dstimg, cv::COLOR_BGR2RGB);
resize(dstimg, dstimg, cv::Size(this->inpWidth, this->inpHeight), cv::INTER_LINEAR);
this->input_image_.resize(this->inpWidth * this->inpHeight * dstimg.channels());
int k = 0;
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < this->inpHeight; i++)
{
for (int j = 0; j < this->inpWidth; j++)
{
float pix = dstimg.ptr<uchar>(i)[j * 3 + c];
this->input_image_[k] = (pix / 255.0 - 0.5) / 0.5;
k++;
}
}
}
}
cv::Mat CodeFormer::detect(cv::Mat &srcimg)
{
int im_h = srcimg.rows;
int im_w = srcimg.cols;
this->preprocess(srcimg);
std::array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
std::vector<int64_t> input2_shape_ = { 1 };
auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
std::vector<Ort::Value> ort_inputs;
ort_inputs.push_back(Ort::Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size()));
ort_inputs.push_back(Ort::Value::CreateTensor<double>(allocator_info, input2_tensor.data(), input2_tensor.size(), input2_shape_.data(), input2_shape_.size()));
std::vector<Ort::Value> ort_outputs = ort_session->Run(Ort::RunOptions{ nullptr }, input_names.data(), ort_inputs.data(), ort_inputs.size(), output_names.data(), output_names.size());
post_process
float* pred = ort_outputs[0].GetTensorMutableData<float>();
//cv::Mat mask(outHeight, outWidth, CV_32FC3, pred); /经过试验,直接这样赋值,是不行的
const unsigned int channel_step = outHeight * outWidth;
std::vector<cv::Mat> channel_mats;
cv::Mat rmat(outHeight, outWidth, CV_32FC1, pred); // R
cv::Mat gmat(outHeight, outWidth, CV_32FC1, pred + channel_step); // G
cv::Mat bmat(outHeight, outWidth, CV_32FC1, pred + 2 * channel_step); // B
channel_mats.push_back(rmat);
channel_mats.push_back(gmat);
channel_mats.push_back(bmat);
cv::Mat mask;
merge(channel_mats, mask); // CV_32FC3 allocated
///不用for循环遍历cv::Mat里的每个像素值,实现numpy.clip函数
mask.setTo(this->min_max[0], mask < this->min_max[0]);
mask.setTo(this->min_max[1], mask > this->min_max[1]); 也可以用threshold函数,阈值类型THRESH_TOZERO_INV
mask = (mask - this->min_max[0]) / (this->min_max[1] - this->min_max[0]);
mask *= 255.0;
mask.convertTo(mask, CV_8UC3);
//cvtColor(mask, mask, cv::COLOR_BGR2RGB);
return mask;
}
void CodeFormer::detect_video(const std::string& video_path,const std::string& output_path, unsigned int writer_fps)
{
cv::VideoCapture video_capture(video_path);
if (!video_capture.isOpened())
{
std::cout << "Can not open video: " << video_path << "\n";
return;
}
cv::Size S = cv::Size((int)video_capture.get(cv::CAP_PROP_FRAME_WIDTH),
(int)video_capture.get(cv::CAP_PROP_FRAME_HEIGHT));
cv::VideoWriter output_video(output_path, cv::VideoWriter::fourcc('m', 'p', '4', 'v'),
30.0, S);
if (!output_video.isOpened())
{
std::cout << "Can not open writer: " << output_path << "\n";
return;
}
cv::Mat cv_mat;
while (video_capture.read(cv_mat))
{
cv::Mat cv_dst = detect(cv_mat);
output_video << cv_dst;
}
video_capture.release();
output_video.release();
}
先试试官方给的样本的效果:
薄马赛克的超分效果:
厚马赛克的超分效果不是很好,就是有点贴脸的感觉:
如果是已经是清晰的图像,超分之后不是很理想,基本上是不能用的,onnx这个效果只能优化人脸:
2.onnx模型python推理
import os
import cv2
import argparse
import glob
import torch
import torch.onnx
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import gpu_is_available, get_device
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
import onnxruntime as ort
from basicsr.utils.registry import ARCH_REGISTRY
pretrain_model_url = {
'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}
if __name__ == '__main__':
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = get_device()
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs',
help='Input image, video or folder. Default: inputs/whole_imgs')
parser.add_argument('-o', '--output_path', type=str, default=None,
help='Output folder. Default: results/<input_name>_<w>')
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5,
help='Balance the quality and fidelity. Default: 0.5')
parser.add_argument('-s', '--upscale', type=int, default=2,
help='The final upsampling scale of the image. Default: 2')
parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
# large det_model: 'YOLOv5l', 'retinaface_resnet50'
# small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
parser.add_argument('--detection_model', type=str, default='retinaface_resnet50',
help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
Default: retinaface_resnet50')
parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')
args = parser.parse_args()
# ------------------------ input & output ------------------------
w = args.fidelity_weight
input_video = False
if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
input_img_list = [args.input_path]
result_root = f'results/test_img_{w}'
# elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
# from basicsr.utils.video_util import VideoReader, VideoWriter
# input_img_list = []
# vidreader = VideoReader(args.input_path)
# image = vidreader.get_frame()
# while image is not None:
# input_img_list.append(image)
# image = vidreader.get_frame()
# audio = vidreader.get_audio()
# fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps
# video_name = os.path.basename(args.input_path)[:-4]
# result_root = f'results/{video_name}_{w}'
# input_video = True
# vidreader.close()
# else: # input img folder
# if args.input_path.endswith('/'): # solve when path ends with /
# args.input_path = args.input_path[:-1]
# # scan all the jpg and png images
# input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
# result_root = f'results/{os.path.basename(args.input_path)}_{w}'
else:
raise ValueError("wtf???")
if not args.output_path is None: # set output path
result_root = args.output_path
test_img_num = len(input_img_list)
if test_img_num == 0:
raise FileNotFoundError('No input image/video is found...\n'
'\tNote that --input_path for video should end with .mp4|.mov|.avi')
# # ------------------ set up background upsampler ------------------
# if args.bg_upsampler == 'realesrgan':
# bg_upsampler = set_realesrgan()
# else:
# bg_upsampler = None
# # ------------------ set up face upsampler ------------------
# if args.face_upsample:
# if bg_upsampler is not None:
# face_upsampler = bg_upsampler
# else:
# face_upsampler = set_realesrgan()
# else:
# face_upsampler = None
# ------------------ set up CodeFormer restorer -------------------
net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9,
connect_list=['32', '64', '128', '256']).to(device)
# ckpt_path = 'weights/CodeFormer/codeformer.pth'
ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'],
model_dir='weights/CodeFormer', progress=True, file_name=None)
checkpoint = torch.load(ckpt_path)['params_ema']
net.load_state_dict(checkpoint)
net.eval()
# # ------------------ set up FaceRestoreHelper -------------------
# # large det_model: 'YOLOv5l', 'retinaface_resnet50'
# # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
# if not args.has_aligned:
# print(f'Face detection model: {args.detection_model}')
# # if bg_upsampler is not None:
# # print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
# # else:
# # print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
# else:
# raise ValueError("wtf???")
face_helper = FaceRestoreHelper(
args.upscale,
face_size=512,
crop_ratio=(1, 1),
# det_model = args.detection_model,
# save_ext='png',
# use_parse=True,
# device=device
)
# -------------------- start to processing ---------------------
for i, img_path in enumerate(input_img_list):
# # clean all the intermediate results to process the next image
# face_helper.clean_all()
if isinstance(img_path, str):
img_name = os.path.basename(img_path)
basename, ext = os.path.splitext(img_name)
print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
# else: # for video processing
# basename = str(i).zfill(6)
# img_name = f'{video_name}_{basename}' if input_video else basename
# print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
# img = img_path
if args.has_aligned:
# the input faces are already cropped and aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
# face_helper.is_gray = is_gray(img, threshold=10)
# if face_helper.is_gray:
# print('Grayscale input: True')
face_helper.cropped_faces = [img]
# else:
# face_helper.read_image(img)
# # get face landmarks for each face
# num_det_faces = face_helper.get_face_landmarks_5(
# only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
# print(f'\tdetect {num_det_faces} faces')
# # align and warp each face
# face_helper.align_warp_face()
else:
raise ValueError("wtf???")
# face restoration for each cropped face
for idx, cropped_face in enumerate(face_helper.cropped_faces):
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
try:
with torch.no_grad():
# output = net(cropped_face_t, w=w, adain=True)[0]
# output = net(cropped_face_t)[0]
output = net(cropped_face_t, w)[0]
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
# torch.cuda.empty_cache()
except Exception as error:
print(f'\tFailed inference for CodeFormer: {error}')
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
# now, export the "net" codeformer to onnx
print("Exporting CodeFormer to ONNX...")
torch.onnx.export(net,
# (cropped_face_t,),
(cropped_face_t,w),
"codeformer.onnx",
# verbose=True,
export_params=True,
opset_version=11,
do_constant_folding=True,
input_names = ['x','w'],
output_names = ['y'],
)
# now, try to load the onnx model and run it
print("Loading CodeFormer ONNX...")
ort_session = ort.InferenceSession("codeformer.onnx", providers=['CPUExecutionProvider'])
print("Running CodeFormer ONNX...")
ort_inputs = {
ort_session.get_inputs()[0].name: cropped_face_t.cpu().numpy(),
ort_session.get_inputs()[1].name: torch.tensor(w).double().cpu().numpy(),
}
ort_outs = ort_session.run(None, ort_inputs)
restored_face_onnx = tensor2img(torch.from_numpy(ort_outs[0]), rgb2bgr=True, min_max=(-1, 1))
restored_face_onnx = restored_face_onnx.astype('uint8')
restored_face = restored_face.astype('uint8')
print("Comparing CodeFormer outputs...")
# see how similar the outputs are: flatten and then compute all the differences
diff = (restored_face_onnx.astype('float32') - restored_face.astype('float32')).flatten()
# calculate min, max, mean, and std
min_diff = diff.min()
max_diff = diff.max()
mean_diff = diff.mean()
std_diff = diff.std()
print(f"Min diff: {min_diff}, Max diff: {max_diff}, Mean diff: {mean_diff}, Std diff: {std_diff}")
# face_helper.add_restored_face(restored_face, cropped_face)
face_helper.add_restored_face(restored_face_onnx, cropped_face)
# # paste_back
# if not args.has_aligned:
# # upsample the background
# if bg_upsampler is not None:
# # Now only support RealESRGAN for upsampling background
# bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
# else:
# bg_img = None
# face_helper.get_inverse_affine(None)
# # paste each restored face to the input image
# if args.face_upsample and face_upsampler is not None:
# restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
# else:
# restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)
# save faces
for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
# save cropped face
if not args.has_aligned:
save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
imwrite(cropped_face, save_crop_path)
# save restored face
if args.has_aligned:
save_face_name = f'{basename}.png'
else:
save_face_name = f'{basename}_{idx:02d}.png'
if args.suffix is not None:
save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
imwrite(restored_face, save_restore_path)
# # save restored img
# if not args.has_aligned and restored_img is not None:
# if args.suffix is not None:
# basename = f'{basename}_{args.suffix}'
# save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
# imwrite(restored_img, save_restore_path)
# # save enhanced video
# if input_video:
# print('Video Saving...')
# # load images
# video_frames = []
# img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
# for img_path in img_list:
# img = cv2.imread(img_path)
# video_frames.append(img)
# # write images to video
# height, width = video_frames[0].shape[:2]
# if args.suffix is not None:
# video_name = f'{video_name}_{args.suffix}.png'
# save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
# vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
# for f in video_frames:
# vidwriter.write_frame(f)
# vidwriter.close()
print(f'\nAll results are saved in {result_root}')
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj