首页 > Python资料 博客日记
掌握python的dataclass,让你的代码更简洁优雅
2024-03-16 18:30:02Python资料围观131次
dataclass
是从Python3.7
版本开始,作为标准库中的模块被引入。
随着Python
版本的不断更新,dataclass
也逐步发展和完善,为Python
开发者提供了更加便捷的数据类创建和管理方式。
dataclass
的主要功能在于帮助我们简化数据类的定义过程。
本文总结了几个我平时使用较多dataclass
技巧。
1. 传统的类定义方式
首先,从平时量化分析的场景中简化一个关于 币交易 的类用来演示。
简化之后,这里只保留5个字段,分别是交易ID,交易对,价格,是否成功和参与交易的地址列表。
class CoinTrans:
def __init__(
self,
id: str,
symbol: str,
price: float,
is_success: bool,
addrs: list,
) -> None:
self.id = id
self.symbol = symbol
self.price = price
self.addrs = addrs
self.is_success = is_success
Python
传统定义类的方式,如上通过__init__
函数来初始化对象的各个属性。
通过这个类构造对象并打印:
if __name__ == "__main__":
coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
print(coin_trans)
运行结果:
<__main__.CoinTrans object at 0x0000022A891FADD0>
这里只是打印出对象的地址,并没有按照我们期望的那样打印对象各个属性的值。
传统的类中,我们如果希望打印出可读的结果,需要自己去实现__str__
函数。
# 在上面的 CoinTrans 类中添加下面的方法
def __str__(self) -> str:
return f"交易信息:{self.id}, {self.symbol}, {self.price}, {self.addrs}, {self.is_success}"
再次运行,结果如下:
交易信息:id01, BTC/USDT, 71000, ['0x1111', '0x2222'], True
2. dataclass装饰器定义类
下面看看使用dataclass
装饰器来定义上面同样的类有多简单。
from dataclasses import dataclass
@dataclass
class CoinTrans:
id: str
symbol: str
price: float
is_success: bool
addrs: list
再次运行:
if __name__ == "__main__":
coin_trans = CoinTrans("id01", "BTC/USDT", "71000", True, ["0x1111", "0x2222"])
print(coin_trans)
得到如下结果:
CoinTrans(id='id01', symbol='BTC/USDT', price='71000', is_success=True, addrs=['0x1111', '0x2222'])
不需要__init__
,也不需要__str__
,只要通过 @dataclass
装饰之后,就可以打印出对象的具体内容。
2.1. 默认值
dataclass
装饰器的方式来定义类,设置默认值很简单,直接在定义属性时就可以设置。
@dataclass
class CoinTrans:
id: str = "id01"
symbol: str = "BTC/USDT"
price: float = "71000.8"
is_success: bool = True
addrs: list[str] = ["0x1111", "0x2222"]
if __name__ == "__main__":
coin_trans = CoinTrans()
print(coin_trans)
运行之后发现,在addrs
属性那行会报错:
ValueError: mutable default <class 'list'> for field addrs is not allowed: use default_factory
大概的意思就是,list
作为一种可变的类型(引用类型,会有被其他对象意外修改的风险),不能直接作为默认值,需要用工厂方法来产生默认值。
其他字符串,数值,布尔类型的数据则没有这个问题。
我们只要定义个函数来产生此默认值即可。
def gen_list():
return ["0x1111", "0x2222"]
@dataclass
class CoinTrans:
id: str = "id01"
symbol: str = "BTC/USDT"
price: float = "71000.8"
is_success: bool = True
addrs: list[str] = field(default_factory=gen_list)
if __name__ == "__main__":
coin_trans = CoinTrans()
print(coin_trans)
再次运行,可以正常执行:
CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8', is_success=True, addrs=['0x1111', '0x2222']
2.2. 隐藏敏感信息
我们打印对象信息的时候,有时执行打印其中几个属性的信息,涉及敏感信息的属性不希望打印出来。
比如,上面的对象,如果不想打印出is_success
和addrs
的信息,可以设置repr=False
。
@dataclass
class CoinTrans:
id: str = "id01"
symbol: str = "BTC/USDT"
price: float = "71000.8"
is_success: bool = field(default=True, repr=False)
addrs: list[str] = field(default_factory=gen_list, repr=False)
再次运行后显示:
CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
2.3. 只读对象
数据分析时,大部分下情况下,原始数据读取之后是不能修改的。
这种情况下,我们可以用dataclass
的frozen
属性来设置数据类只读,防止不小心篡改了数据。
未设置frozen
属性之前,可以随意修改对象的属性,比如:
if __name__ == "__main__":
coin_trans = CoinTrans()
print(f"修改前: {coin_trans}")
coin_trans.symbol = "ETH/USDT"
print(f"修改后: {coin_trans}")
运行结果:
修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
修改后: CoinTrans(id='id01', symbol='ETH/USDT', price='71000.8')
设置frozen
属性之后,看看修改属性值会怎么样:
@dataclass(frozen=True)
class CoinTrans:
id: str = "id01"
#... 省略 ...
再次运行,会发现修改属性会触发异常。
修改前: CoinTrans(id='id01', symbol='BTC/USDT', price='71000.8')
Traceback (most recent call last):
File "D:\projects\python\samples\data_classes\main.py", line 66, in <module>
coin_trans.symbol = "ETH/USDT"
^^^^^^^^^^^^^^^^^
File "<string>", line 4, in __setattr__
dataclasses.FrozenInstanceError: cannot assign to field 'symbol'
2.4. 转化为元组和字典
最后,dataclasses
模块还提供了两个函数可以很方便的将数据类转换为元组和字典。
这在和其他分析程序交互时非常有用,因为和其他程序交互时,参数一般都用元组或者字典这种简单通用的结构,
而不会直接用自己定义的数据类。
from dataclasses import dataclass, field, astuple, asdict
if __name__ == "__main__":
coin_trans = CoinTrans()
print(astuple(coin_trans))
print(asdict(coin_trans))
运行结果:
('id01', 'BTC/USDT', '71000.8', True, ['0x1111', '0x2222'])
{'id': 'id01', 'symbol': 'BTC/USDT', 'price': '71000.8', 'is_success': True, 'addrs': ['0x1111', '0x2222']}
3. 总结
在Python
中,数据类主要用于存储数据,并通常包含属性和方法来操作这些数据。
然而,在定义数据类时,我们通常需要编写一些重复性的代码,如构造函数、属性访问器和字符串表示等。dataclass
装饰器的出现,使得这些通用方法的生成变得自动化,从而极大地简化了数据类的定义过程。
总的来说,dataclass
通过简化数据类的创建和管理过程,提高了开发效率,是我们在数据分析时的一个非常有用的工具。
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj