首页 > Python资料 博客日记
NumPy 泊松分布模拟与 Seaborn 可视化技巧
2024-05-29 20:30:02Python资料围观230次
这篇文章介绍了NumPy 泊松分布模拟与 Seaborn 可视化技巧,分享给大家做个参考,收藏Python资料网收获更多编程知识
泊松分布
简介
泊松分布是一种离散概率分布,用于描述在给定时间间隔内随机事件发生的次数。它常用于模拟诸如客户到达商店、电话呼叫接入中心等事件。
参数
泊松分布用一个参数来定义:
λ:事件发生的平均速率,表示在单位时间内事件发生的平均次数。
公式
泊松分布的概率质量函数 (PMF) 给出了在指定时间间隔内发生 k 次事件的概率,计算公式为:
P(k) = e^(-λ) (λ^k) / k!
其中:
e^(-λ)
:表示没有事件发生的概率。
(λ^k)
:表示 k 次事件发生的概率。
k!
:表示 k 个元素的阶乘,即 k × (k - 1) × (k - 2) × ... × 2 × 1。
生成泊松分布数据
NumPy 提供了 random.poisson()
函数来生成服从泊松分布的随机数。该函数接受以下参数:
lam
:事件发生的平均速率。
size
:输出数组的形状。
示例:生成一个平均速率为 5 的事件在 10 个时间间隔内发生的次数:
import numpy as np
data = np.random.poisson(lam=5, size=10)
print(data)
可视化泊松分布
Seaborn 库提供了便捷的函数来可视化分布,包括泊松分布。
示例:绘制平均速率为 7 的事件在 1000 个时间间隔内发生的次数分布:
import seaborn as sns
import numpy as np
data = np.random.poisson(lam=7, size=1000)
sns.distplot(data)
plt.show()
正态分布与泊松分布的关系
当事件发生的平均速率 λ 很大时,泊松分布可以近似为正态分布。其均值 μ 为 λ,标准差 σ 为 sqrt(λ)。
示例:比较泊松分布和正态分布的形状:
import seaborn as sns
import numpy as np
lam = 50
# 生成泊松分布数据
data_poisson = np.random.poisson(lam=lam, size=1000)
# 生成正态分布数据
mu = lam
sigma = np.sqrt(lam)
data_normal = np.random.normal(loc=mu, scale=sigma, size=1000)
sns.distplot(data_poisson, label="Poisson")
sns.distplot(data_normal, label="Normal")
plt.legend()
plt.show()
练习
- 在一个小时内,一家商店平均收到 10 位顾客。模拟顾客到达商店的次数并绘制分布图。
- 比较不同平均速率下泊松分布形状的变化。
- 利用泊松分布来模拟一个呼叫中心每天接到的电话呼叫数量,并计算平均呼叫量和每天接听超过 30 个电话的概率。
解决方案
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
# 1. 模拟顾客到达商店的次数并绘制分布图
data = np.random.poisson(lam=10, size=1000)
sns.distplot(data)
plt.show()
# 2. 比较不同平均速率下泊松分布形状的变化
lam_values = [5, 10, 20, 50]
for lam in lam_values:
data = np.random.poisson(lam=lam, size=1000)
sns.distplot(data, label=f"λ={lam}")
plt.legend()
plt.show()
# 3. 模拟电话呼叫数量并计算平均呼叫量和每天接听超过 30 个电话的概率
calls_per_day = np.random.poisson(lam=150, size=365)
print("平均呼叫量:", calls_per_day.mean())
print("每天接听超过 30 个电话的概率:", (calls_per_day > 30).mean())
最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:Let us Coding
,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Windows上安装 Python 环境并配置环境变量 (超详细教程)