首页 > Python资料 博客日记
基于opencv[python]的人脸检测
2024-08-11 12:00:04Python资料围观49次
这篇文章介绍了基于opencv[python]的人脸检测,分享给大家做个参考,收藏Python资料网收获更多编程知识
1 图片爬虫
这里的代码转载自:http://t.csdnimg.cn/T4R4F
# 获取图片数据
import os.path
import fake_useragent
import requests
from lxml import etree
# UA伪装
head = {"User-Agent": fake_useragent.UserAgent().random}
pic_name = 0
def request_pic(url):
# 发送请求
response = requests.get(url, headers=head)
# 获取想要的数据
res_text = response.text
# 数据解析
tree = etree.HTML(res_text)
li_list = tree.xpath("//div[@class='slist']/ul/li")
for li in li_list:
# 图片的url
img_url = "https://pic.netbian.com" + "".join(li.xpath("./a/img/@src"))
# 发送请求
img_response = requests.get(img_url, headers=head)
# 获取想要的数据
img_content = img_response.content
global pic_name
with open(f"./picLib/{pic_name}.jpg", "wb") as fp:
fp.write(img_content)
pic_name += 1
if __name__ == '__main__':
# 创建存放照片的文件夹
if not os.path.exists("./picLib"):
os.mkdir("./picLib")
# 网站的url
url = "https://pic.netbian.com/4kdongman/"
request_pic(url)
for i in range(1,10):
next_url = f"https://pic.netbian.com/4kmeinv/index_{i}.html"
request_pic(next_url)
结果如图1-1所示:
图 1-1
2 基于opencv自带分类器的人脸检测
import cv2
import os
import matplotlib.pyplot as plt
# 定义人脸检测器的路径
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# 设置图片文件夹路径
folder_path = 'picLib'
# 设置要显示的图像数量
num_to_display = 5 # 例如,只显示前4张图像
# 创建一个图形和子图
fig, axs = plt.subplots(1, num_to_display, figsize=(15, 5))
# 遍历文件夹中的前几张图片
for i in range(num_to_display):
file_name = f'{i}.jpg'
image_path = os.path.join(folder_path, file_name)
# 读取图片
img = cv2.imread(image_path)
if img is None:
print(f"Error loading image {file_name}")
continue
# 转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# 在原图上绘制矩形框
for (x, y, w, h) in faces:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
# 注意:OpenCV 图像是BGR,而Matplotlib 期望的是RGB,因此我们需要转换颜色通道
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 显示图像
axs[i].imshow(img_rgb)
axs[i].axis('off') # 关闭坐标轴
# 显示图形
plt.show()
运行结果如图2-1所示:
图 2-1
从这里可以清晰看到有1/3的图像没有成功检测到,后面我试试用Faster R-CNN模型,不过需要标注,数据量也大,这里先试着玩玩呗。
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj