首页 > Python资料 博客日记
Python分析程序性能指南 - 3种内存和CPU诊断方法助你优化代码(掌握Python内存和CPU分析技巧)
2023-08-19 13:26:19Python资料围观667次
分析程序的资源占用对优化性能非常关键。Python提供了一些模块和工具,可以方便我们捕捉程序运行时的CPU和内存使用情况。
首先,我们来看看CPU使用情况。Python标准库中的time模块有几个函数可以获取程序执行所消耗的CPU时间。例如time.process_time()会返回自程序启动以来,调用进程所消耗的CPU时间总和。time.perf_counter()函数在Linux/Mac上也可返回进程CPU时间。此外,也可以在代码各部分添加计时语句,打印出某个代码块执行所用时间。
而如果想更全面地了解程序各部分对CPU的占用,可以使用cProfile这个性能分析模块。它可以生成程序在每个函数上所花费时间的报告,一眼就可以看出哪些函数调用最频繁和耗时最长。如果需要更细粒度的行级分析,可以使用line_profiler这个第三方模块。
内存使用方面,Python中的memory_profiler模块可以帮助我们分析内存占用情况。装饰器@profile可以在函数调用前后分别记录内存,从而得知某个函数的内存分配情况。也可以使用 memory_profiler 模块自带的脚本,它可以自动打印各函数内存增长报告。
此外,还可以使用tracemalloc模块跟踪内存块的分配情况,它可以追踪内存块的增长,并生成报告汇总每个代码行的内存分配情况,以找到可能的内存泄漏处。
如果要进行应用级的性能分析,可以查看操作系统提供的工具,如Linux下的top命令,它可以显示所有的进程内存和CPU使用情况。也可以使用nmap等可视化的系统监控工具,全方位了解程序资源占用。
标签: Python高手进阶指南
相关文章
- Numba装饰器与JIT编译器揭秘(如何使用Numba加速Python代码)
- Numba:无缝将Python代码编译为机器代码的利器(让你的Python程序跑的飞快!Numba高效编译的6大技巧)
- PyPy与CPython扩展库的兼容性问题及优化方案 (揭秘PyPy如何与C扩展无缝衔接,5个兼容性要点让你易如反掌)
- PyPy何时会比CPython更快?(3类典型场景助你充分利用PyPy优势)
- PyPy JIT编译器背后的奥秘(揭开PyPy高性能Python的编译优化技术)
- 用Python如何对算法和数据结构进行效率评估和优化 (Python算法与数据结构优化技巧)
- 使用cProfile找到Python程序的热点函数(使用cProfile剖析Python程序 找到瓶颈函数轻松优化)
- 彻底理解Global Interpreter Lock,解锁Python多线程编程(为什么Python多线程速度这么慢)
- 揭秘Python字节码:深入理解Python解释执行的内部过程(10分钟了解背后驱动Python运行的核心技术)
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj