首页 > Python资料 博客日记
Numba装饰器与JIT编译器揭秘(如何使用Numba加速Python代码)
2023-08-22 22:37:08Python资料围观432次
Numba是一个开源的Python编译器,可以通过装饰器和JIT(Just-In-Time)编译器加速Python代码,特别适合数值计算和科学计算。那么Numba的工作原理是什么呢?
Numba的核心是JIT编译器。JIT编译器不像传统的AOT(Ahead Of Time)编译器那样在执行前编译整个程序,而是只编译执行过程中实际运行的代码部分。这样可以跳过编译优化整个程序的时间,直接生成机器码执行,极大地提升了执行效率。
我们主要通过@jit装饰器使用Numba的JIT编译器。@jit会检测被装饰的函数,找出可以进行编译的代码,然后进行编译和优化,生成优化后的机器码,从而加速函数执行速度。
例如:
from numba import jit @jit def sum(a): s = 0 for i in range(a.shape[0]): s += a[i] return s
@jit自动将sum函数编译为机器码,循环部分直接转换为处理数组的优化代码,避免了Python解释器的循环执行开销。
我们也可以通过@njit装饰器直接生成纯机器码,不包含Python对象;或者通过@vectorize装饰器自动向量化数组代码。这使Numba可以无缝加速数值计算代码,比如Numpy、Pandas和Scipy等库的关键函数都用Numba优化过。
另外,Numba支持CUDA,可以用于GPU加速。通过@jit(target='cuda')装饰器,Numba可以将Python函数编译为GPU可执行的代码,利用GPU并行计算大大提升执行效率。
综上所述,Numba通过JIT编译技术可以无侵入地加速Python代码,是Python高性能计算不可或缺的工具。正确使用Numba装饰器,就可以轻松获得显著的性能提升。
标签: Python高手进阶指南
相关文章
- Numba:无缝将Python代码编译为机器代码的利器(让你的Python程序跑的飞快!Numba高效编译的6大技巧)
- PyPy与CPython扩展库的兼容性问题及优化方案 (揭秘PyPy如何与C扩展无缝衔接,5个兼容性要点让你易如反掌)
- PyPy何时会比CPython更快?(3类典型场景助你充分利用PyPy优势)
- PyPy JIT编译器背后的奥秘(揭开PyPy高性能Python的编译优化技术)
- Python分析程序性能指南 - 3种内存和CPU诊断方法助你优化代码(掌握Python内存和CPU分析技巧)
- 用Python如何对算法和数据结构进行效率评估和优化 (Python算法与数据结构优化技巧)
- 使用cProfile找到Python程序的热点函数(使用cProfile剖析Python程序 找到瓶颈函数轻松优化)
- 彻底理解Global Interpreter Lock,解锁Python多线程编程(为什么Python多线程速度这么慢)
- 揭秘Python字节码:深入理解Python解释执行的内部过程(10分钟了解背后驱动Python运行的核心技术)
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj