首页 > Python资料 博客日记
Python 栅格数据处理教程(一)
2024-08-13 18:30:02Python资料围观97次
本文将介绍通过 ArcGIS Pro 的 Python 模块(arcpy)对栅格数据定义投影及裁剪的方法。
1 数据来源及介绍
降水量数据:国家青藏高原科学数据中心的 中国1km分辨率逐月降水量数据集。
行政区数据:天地图行政区划数据中的吉林省边界面数据,该数据为 GeoJSON 格式,可通过 QGIS 等软件将其转换为 shapefile 格式文件。
本文所使用的数据为国家青藏高原科学数据中心的 中国1km分辨率逐月降水量数据集。该数据为 NetCDF 格式,通过《NetCDF 文件批量转栅格并导出栅格各波段》文中的方法转换后的 tif 格式数据没有确定坐标系,而数据官网中对于坐标系统建议使用 WGS84,故本文通过 arcpy 的 DefineProjection 函数批量定义栅格投影后,通过 ExtractByMask 函数根据吉林省边界面数据裁剪得到吉林省范围的降水量数据。
2 示例代码
2.1 定义栅格投影
import os
import arcpy
# "TIF":栅格数据文件夹相对路径
for fileName in os.listdir("TIF"):
# 遍历文件夹中所有后缀名为 .tif 的文件
if fileName[-4:] == ".tif":
# 读取栅格数据文件路径
raster = os.path.join("TIF", fileName)
# 定义栅格投影为 WGS 1984
sr = arcpy.SpatialReference("WGS 1984")
arcpy.DefineProjection_management(raster, sr)
print(f"{fileName[:-4]} conversion successful!")
将定义投影后的数据导入 ArcGIS,其空间参考信息如下:
2.2 按掩膜提取
import os
import arcpy
from arcpy import sa
# 如果在代码同级文件夹中没有结果数据库,则创建该数据库
if "Pre_Jilin.gdb" not in os.listdir("."):
print("即将为您创建用于保存结果栅格的文件地理数据库(Pre_Jilin.gdb)……")
arcpy.CreateFileGDB_management(".", "Pre_Jilin")
print("数据库创建完成!")
for fileName in os.listdir("TIF"):
if fileName[-4:] == ".tif":
# 读取输入栅格及掩膜数据的文件路径,可根据实际情况调整
inRaster = os.path.join("TIF", fileName)
inMaskData = "Data/Jilin.shp"
# 执行按掩膜提取,并将提取结果保存至数据库
# 结果文件名称与不包含后缀部分的原始文件名称相同
sa.ExtractByMask(inRaster, inMaskData).save(f"Pre_Jilin.gdb/{fileName[:-4]}")
print(f"{fileName[:-4]} conversion successful!")
按掩膜提取结果栅格如下所示:
3 降水数据参考文献格式
3.1 数据的引用
彭守璋. (2020). 中国1km分辨率逐月降水量数据集(1901-2023). 国家青藏高原数据中心. https://doi.org/10.5281/zenodo.3114194.
Peng, S. (2020). 1-km monthly precipitation dataset for China (1901-2023). National Tibetan Plateau / Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.3114194.
3.2 文章的引用
1、Peng, S.Z., Ding, Y.X., Wen, Z.M., Chen, Y.M., Cao, Y., & Ren, J.Y. (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agricultural and Forest Meteorology, 233, 183-194. https://doi.org/10.1016/j.agrformet.2016.11.129
2、Ding, Y.X., & Peng, S.Z. (2020). Spatiotemporal trends and attribution of drought across China from 1901–2100. Sustainability, 12(2), 477.
3、Peng, S.Z., Ding, Y.X., Liu, W.Z., & Li, Z. (2019). 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11, 1931–1946. https://doi.org/10.5194/essd-11-1931-2019
4、Peng, S., Gang, C., Cao, Y., & Chen, Y. (2017). Assessment of climate change trends over the loess plateau in china from 1901 to 2100. International Journal of Climatology.
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程