首页 > Python资料 博客日记
从源码分析 vllm + Ray 的分布式推理流程
2024-08-19 03:00:13Python资料围观219次
一、前言
随着 LLM 模型越来越大,单 GPU 已经无法加载一个模型。以 Qwen-14B-Chat 模型为例,模型权重大概 28GB,但是单个 NVIDIA A10 仅有 24GB 显存。如果想要在 A10 上部署 Qwen-14B-Chat 模型,我们需要将模型切分后部署到 2 个 A10 机器上,每个 A10 卡加载一半的模型,这种方式称之为分布式推理。
社区涌现了很多支持分布式推理的框架如 vllm、deepspeed-mii,rtp-llm 等。本文选取了 vllm 框架,从源码角度分析 vllm + Ray 如何实现 LLM 模型的分布式推理。
二、在 K8s 中部署 vllm 分布式推理应用
2.1 模型准备
下载 Qwen-14B-Chat 到 OSS 中,并在集群中创建对应的 pv,pvc。pvc 名称为 llm-model。
kubectl apply -f- << EOF
apiVersion: v1
kind: Secret
metadata:
name: oss-secret
stringData:
akId: ${your-accesskey-id} # 用于访问oss的AK
akSecret: ${your-accesskey-secert} # 用于访问oss的SK
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: llm-model
labels:
alicloud-pvname: llm-model
spec:
capacity:
storage: 30Gi
accessModes:
- ReadOnlyMany
persistentVolumeReclaimPolicy: Retain
csi:
driver: ossplugin.csi.alibabacloud.com
volumeHandle: model-oss
nodePublishSecretRef:
name: oss-secret
namespace: default
volumeAttributes:
bucket: ${your-bucket-name}
url: ${your-bucket-endpoint} # e.g. oss-cn-hangzhou.aliyuncs.com
otherOpts: "-o umask=022 -o max_stat_cache_size=0 -o allow_other"
path: "/"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: llm-model
spec:
accessModes:
- ReadOnlyMany
resources:
requests:
storage: 30Gi
selector:
matchLabels:
alicloud-pvname: llm-model
EOF
2.2 部署分布式 vllm 应用
1. 执行以下命令,部署 vllm 应用
kubectl apply -f- <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm
labels:
app: vllm
spec:
replicas: 2
selector:
matchLabels:
app: vllm
template:
metadata:
labels:
app: vllm
spec:
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:
matchExpressions:
- key: app
operator: In
values:
- vllm
topologyKey: kubernetes.io/hostname
volumes:
- name: model
persistentVolumeClaim:
claimName: llm-model
containers:
- name: vllm
image: kube-ai-registry.cn-shanghai.cr.aliyuncs.com/kube-ai/vllm:0.4.1
command:
- "sh"
- "-c"
- "sleep 7d"
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 30
periodSeconds: 30
resources:
limits:
nvidia.com/gpu: "1"
requests:
cpu: 4
memory: 8Gi
nvidia.com/gpu: "1"
volumeMounts:
- mountPath: /mnt/models
name: model
EOF
2. 执行以下命令,启动 vllm 应用
-
启动 ray
在 Pod1 上运行
ray start --head
# 启动后,日志中会显示ray-head-address地址
在 Pod2 上运行
# ray-head-address 设置为pod1日志中显示的ray-head-address地址
ray start --address=<ray-head-address>
-
运行如下命令,初始化 Pod2 上的本地模型
python3 model_init.py
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
config = AutoConfig.from_pretrained(
"/mnt/models/Qwen-14B-Chat",
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("/mnt/models/Qwen-14B-Chat", trust_remote_code=True)
-
在 Pod1 上运行如下命令启动 qwen 模型
python3 -m vllm.entrypoints.openai.api_server \
--port 8080 \
--trust-remote-code \
--served-model-name qwen \
--model /mnt/models/Qwen-14B-Chat \
--gpu-memory-utilization 0.95 \
--tensor-parallel-size 2
-
登陆 pod1,访问应用
kubectl -n <your-namespace> exec -it <pod1-name> bash
curl -H "Content-Type: application/json" \
http://localhost:8080/v1/chat/completions -X POST \
-d '{"model": "qwen", "messages": [{"role": "user", "content": "你好"}], "max_tokens": 512, "temperature": 0.7, "top_p": 0.9, "seed": 10, "stop":["<|endoftext|>", "<|im_end|>", "<|im_start|>"]}'
三、分布式推理总体流程分析
1.入口函数:vllm/entrypoints/openai/api_server.py main
if __name__ == "__main__":
# 构建engine args
engine_args = AsyncEngineArgs.from_cli_args(args)
# 构建engine
engine = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
openai_serving_chat = OpenAIServingChat(engine, served_model_names,
args.response_role,
args.lora_modules,
args.chat_template)
openai_serving_completion = OpenAIServingCompletion(
engine, served_model_names, args.lora_modules)
app.root_path = args.root_path
uvicorn.run(app)
2.构建 LLM engine
engine = AsyncLLMEngine.from_engine_args(
engine_args, usage_context=UsageContext.OPENAI_API_SERVER)
def from_engine_args():
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_config = engine_args.create_engine_config()
# ray 集群初始化
initialize_ray_cluster(engine_config.parallel_config)
from vllm.executor.ray_gpu_executor import RayGPUExecutorAsync
executor_class = RayGPUExecutorAsync
# Create the engine configs.
engine_config = engine_args.create_engine_config()
# ray 集群初始化
# 1. ray.init()
# 2. 根据集群内gpu数量 & tp并发度设置ray placement策略
initialize_ray_cluster(engine_config.parallel_config)
from vllm.executor.ray_gpu_executor import RayGPUExecutorAsync
executor_class = RayGPUExecutorAsync
# Create the async LLM engine.
engine = cls(...) #创建一个AsyncLLMEngine实例
# AsyncLLMEngine.__init__ -> self._init_engine -> _AsyncLLMEngine.__init__ -> LLMEngine.__init__ -> executor_class() 即调用RayGPUExecutorAsync.__init__
3.初始化 Ray 集群
Ray Worker 初始化包括 Ray 集群初始化,Ray Worker 初始化。在 Ray worker 初始化时会分布式加载模型。
# RayGPUExecutorAsync 继承了RayGPUExecutor及ExecutorAsyncBase 类,初始化时会调用RayGPUExecutor的self._init_executor 方法
def _init_executor(self) -> None:
# Create the parallel GPU workers. 初始化workers 核心代码
self._init_workers_ray(placement_group)
def _init_workers_ray():
# 定义worker, 是vllm.worker.worker模块里的Worker类
# actor为RayWorkerWrapper类
worker = ray.remote(
num_cpus=0,
num_gpus=num_gpus,
scheduling_strategy=scheduling_strategy,
**ray_remote_kwargs,
)(RayWorkerWrapper).remote(
worker_module_name="vllm.worker.worker",
worker_class_name="Worker",
trust_remote_code=self.model_config.trust_remote_code,
)
# 在Ray Worker上依次执行如下方法
self._run_workers("get_node_and_gpu_ids",
use_dummy_driver=True)
self._run_workers("update_environment_variables",
all_args=all_args_to_update_environment_variables)
self._run_workers("init_worker", all_kwargs=init_worker_all_kwargs)
self._run_workers("init_device")
self._run_workers(
"load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers,
)
def _run_workers():
# Start the ray workers first.
ray_worker_outputs = [
# worker是前面定义的RayWorkerWrapper类, 继承RayWorkerWrapper类
# 实际调用了RayWorkerWrapper.execute_method 并在远程实例上执行method方法
worker.execute_method.remote(method, *worker_args,
**worker_kwargs)
for (worker, worker_args, worker_kwargs
) in zip(self.workers, all_worker_args, all_worker_kwargs)
]
def init_worker():
# worker_module_name 是 vllm.worker.worker 就是_init_workers_ray方法中传入的
mod = importlib.import_module(self.worker_module_name)
# Worker
worker_class = getattr(mod, self.worker_class_name)
self.worker = worker_class(*args, **kwargs)
# Worker.__init__ -> ModelRunner.__init__
def init_device():
# 初始化分布式推理的机器信息
"""Initialize the distributed environment."""
init_distributed_environment(parallel_config.world_size, rank,
distributed_init_method, local_rank)
def load_model():
self.model_runner.load_model() # ModelRunner.load_model() -> vllm.model_executor.model_loader.loader.load_model
执行完 load_model()的预期日志输出如下,可以看到两个 pod,每个加载了 13.2845 GB,即一半的模型。
INFO 04-26 09:39:46 model_runner.py:173] Loading model weights took 13.2845 GB
(RayWorkerWrapper pid=3327, ip=192.168.12.132) INFO 04-26 09:39:51 model_runner.py:173] Loading model weights took 13.2845 GB
4.对外提供服务
创建 OpenAIServingChat 以及 OpenAIServingCompletion 实例,启动 uvicorn 对外提供服务。
@app.post("/v1/chat/completions")
openai_serving_chat = OpenAIServingChat(engine, served_model_names,
args.response_role,
args.lora_modules,
args.chat_template)
@app.post("/v1/completions")
openai_serving_completion = OpenAIServingCompletion(
engine, served_model_names, args.lora_modules)
app.root_path = args.root_path
uvicorn.run(app)
3.1 分布式推理过程
当启动参数--tensor-parallel-size > 1 时,会自动触发 ray 分布式部署。
1. 构建 LLM engine 时会对 Ray 集群进行初始化
# ray 集群初始化
initialize_ray_cluster(engine_config.parallel_config)
parallel_config 的配置如下,pp=1,tp=2,world_size=2
{'pipeline_parallel_size': 1, 'tensor_parallel_size': 2, 'worker_use_ray': True, 'max_parallel_loading_workers': None, 'disable_custom_all_reduce': False, 'tokenizer_pool_config': None, 'ray_workers_use_nsight': False, 'placement_group': None, 'world_size': 2}
初始化时会为 worker 进程创建 placement_group。
1)获取 ray cluster 中所有 gpu 的数量。
2)根据 world size 申请 gpu placement_group_specs = ([{"GPU": 1}] * parallel_config.world_size)。
3)创建 placement_group,ray 会根据 placement_group 在对应 node 上启动 actor。
2. 在每个 worker 上执行 get_node_and_gpu_ids 方法
# 获取node及node上分配的gpu卡信息
def get_node_and_gpu_ids(self) -> Tuple[str, List[int]]:
node_id = ray.get_runtime_context().get_node_id()
gpu_ids = ray.get_gpu_ids()
return node_id, gpu_ids
3. 在每个 worker 上执行 update_environment_variables
# 第二步获取的worker_node以及gpu信息
worker_node_and_gpu_ids = self._run_workers("get_node_and_gpu_ids",
use_dummy_driver=True)
# Set environment variables for the driver and workers.
all_args_to_update_environment_variables = [({
"CUDA_VISIBLE_DEVICES":
",".join(map(str, node_gpus[node_id])),
"VLLM_INSTANCE_ID":
VLLM_INSTANCE_ID,
"VLLM_TRACE_FUNCTION":
os.getenv("VLLM_TRACE_FUNCTION", "0"),
}, ) for (node_id, _) in worker_node_and_gpu_ids]
4. 在每个 worker 上执行 init_device 方法
# worker的启动参数
init_worker_all_kwargs = []
# worker_node_and_gpu_ids 是第二步获取的worker上的gpu信息
for rank, (node_id, _) in enumerate(worker_node_and_gpu_ids):
local_rank = node_workers[node_id].index(rank)
init_worker_all_kwargs.append(
collect_arg_helper_func(
model_config=self.model_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
device_config=self.device_config,
cache_config=self.cache_config,
load_config=self.load_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
lora_config=self.lora_config,
vision_language_config=self.vision_language_config,
is_driver_worker=rank == 0,
))
def init_device(self) -> None:
if self.device_config.device.type == "cuda":
# torch.distributed.all_reduce does not free the input tensor until
# the synchronization point. This causes the memory usage to grow
# as the number of all_reduce calls increases. This env var disables
# this behavior.
# Related issue:
# https://discuss.pytorch.org/t/cuda-allocation-lifetime-for-inputs-to-distributed-all-reduce/191573
os.environ["TORCH_NCCL_AVOID_RECORD_STREAMS"] = "1"
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
self.device = torch.device(f"cuda:{self.local_rank}")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
torch.cuda.empty_cache()
self.init_gpu_memory = torch.cuda.mem_get_info()[0]
else:
raise RuntimeError(
f"Not support device type: {self.device_config.device}")
# Initialize the distributed environment.
init_worker_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method,
self.local_rank)
# Set random seed.
set_random_seed(self.model_config.seed)
核心方法 init_worker_distributed_environment 用于构建分布式集群的 world 信息,类似 horovod 及 deepspeed 框架中的 world info。
该方法参数如下:
work1: self.rank=0, self.local_rank=0, self.distributed_init_method="tcp://192.168.12.120:42167" (ray master)
{'pipeline_parallel_size': 1, 'tensor_parallel_size': 2, 'worker_use_ray': True, 'max_parallel_loading_workers': None, 'disable_custom_all_reduce': False, 'tokenizer_pool_config': None, 'ray_workers_use_nsight': False, 'placement_group': <ray.util.placement_group.PlacementGroup object at 0x7fdeaa896ce0>, 'world_size': 2}, {'id': PlacementGroupID(51489eb26a9335f31ed1bdb4eace04000000), 'bundle_cache': [{'GPU': 1.0}, {'GPU': 1.0}]}, self.rank=0, tcp://192.168.12.120:42167, self.local_rank=0
work2: self.rank=1,
self.local_rank=0,self.distributed_init_method="tcp://192.168.12.120:42167"
{'pipeline_parallel_size': 1, 'tensor_parallel_size': 2, 'worker_use_ray': True, 'max_parallel_loading_workers': None, 'disable_custom_all_reduce': False, 'tokenizer_pool_config': None, 'ray_workers_use_nsight': False, 'world_size': 2}, self.rank=1, tcp://192.168.12.120:42167, self.local_rank=0
self.rank 全局递增,self.local_rank 是指在一个 pod 内第几个 gpu。
5. 在每个 worker 执行 load_model 方法
load_model 用于加载分布式模型,比较复杂,在下面的章节中单独介绍。
3.2 分布式模型加载流程
在每个 worker 执行 load_model 方法
def load_model():
self.model_runner.load_model()
# ModelRunner.load_model() -> vllm.model_executor.model_loader.loader.load_model
def load_model(self) -> None:
with CudaMemoryProfiler() as m:
# get_model 获取模型
self.model = get_model(
model_config=self.model_config,
device_config=self.device_config,
load_config=self.load_config,
lora_config=self.lora_config,
vision_language_config=self.vision_language_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
)
self.model_memory_usage = m.consumed_memory
logger.info(f"Loading model weights took "
f"{self.model_memory_usage / float(2**30):.4f} GB")
# get_model -> loader.load_model -> DefaultModelLoader.load_model
def load_model(self, *, model_config: ModelConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
vision_language_config: Optional[VisionLanguageConfig],
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig) -> nn.Module:
with set_default_torch_dtype(model_config.dtype):
with torch.device(device_config.device):
"""Initialize a model with the given configurations."""
# 初始化模型
model = _initialize_model(model_config, self.load_config,
lora_config, vision_language_config)
# 调用对应model的load_weights方法
model.load_weights(
self._get_weights_iterator(model_config.model,
model_config.revision,
fall_back_to_pt=getattr(
model,
"fall_back_to_pt_during_load",
True)), )
for _, module in model.named_modules():
linear_method = getattr(module, "linear_method", None)
if linear_method is not None:
linear_method.process_weights_after_loading(module)
if hasattr(module, "process_weights_after_loading"):
module.process_weights_after_loading()
return model.eval()
# 根据model config找到具体是什么模型
def _initialize_model(
model_config: ModelConfig, load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
vision_language_config: Optional[VisionLanguageConfig]) -> nn.Module:
"""Initialize a model with the given configurations."""
# Qwen-7B-Chat/config.json中architecture字段
model_class = get_model_architecture(model_config)[0]
linear_method = _get_linear_method(model_config, load_config)
return model_class(config=model_config.hf_config,
linear_method=linear_method,
**_get_model_initialization_kwargs(
model_class, lora_config, vision_language_config))
# model_class 是 <class 'vllm.model_executor.models.qwen.QWenLMHeadModel'>
model.load_weights 即调用 QwenLMHeadModel 的 load_weights 方法
# QWenLMHeadModel.load_weights
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "w2", 0),
("gate_up_proj", "w1", 1),
]
# 模型每层权重及其名称
# self.named_parameters即model.named_parameters()
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
# name: transformer.h.27.mlp.c_proj.weight
# loaded_weight: tensor(xxx)
if "rotary_emb.inv_freq" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
# 如果在stacked_params_mapping里,就需要把shard_name改为param_name
# 如 name为 transformer.h.0.mlp.w1.weight,则name需要改为 transformer.h.0.mlp.gate_up_proj.weight
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# python的for-else语法,到达这里意味着没有执行循环中的 break 语句
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
# 根据name找到对应的weight_loader方法
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
模型层权重及其 weight_loader 方法
# param,weight_loader
lm_head.weight, weight_loader <bound method VocabParallelEmbedding.weight_loader of ParallelLMHead()>
transformer.h.0.attn.c_attn.weight, weight_loader <bound method QKVParallelLinear.weight_loader of QKVParallelLinear()>
transformer.h.0.attn.c_proj.weight, weight_loader <bound method RowParallelLinear.weight_loader of RowParallelLinear()>
transformer.h.0.ln_1.weight, weight_loader <function default_weight_loader at 0x7f66201ee0e0>
transformer.h.0.ln_2.weight, weight_loader <function default_weight_loader at 0x7f66201ee0e0>
transformer.h.0.mlp.c_proj.weight, weight_loader <bound method RowParallelLinear.weight_loader of RowParallelLinear()>
transformer.h.0.mlp.gate_up_proj.weight, weight_loader <bound method MergedColumnParallelLinear.weight_loader of MergedColumnParallelLinear()>
transformer.ln_f.weight, weight_loader <function default_weight_loader at 0x7f66201ee0e0>
transformer.wte.weight, weight_loader <bound method VocabParallelEmbedding.weight_loader of VocabParallelEmbedding()>
模型的每一层都有自己的分布式加载方法,如 transformer.h.0.attn.c_proj.weight 这个权重使用了 RowParallelLinear.weight_loader 方法。
class RowParallelLinear(torch.nn.Module):
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
# 获取worker的tp_rank,根据tp_rank计算需要加载的权重范围
tp_rank = get_tensor_model_parallel_rank()
input_dim = getattr(param, "input_dim", None)
param_data = param.data
if input_dim is not None:
shard_size = param_data.shape[input_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(input_dim, start_idx,
shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
模型切分采用了 Megatron-LM 算法,详情可参考论文【文末查看】
四、分布式模型切分算法 Megatron-LM
4.1 分布式节点通信:AllReduce
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#
1)Reduce:将每个 GPU 的计算结果汇总到某个特定的 GPU 上
2)Broadcast:将某个 GPU 的数据同步到所有 GPU 上
3)AllReduce = Reduce + Broadcast
4.2 Transformer 切分
Transformer 层由一个自注意力模块(self-attention block)后跟一个两层的多层感知机(MLP)实现的。
MLP
如图所示,MLP 由两个部分组成,GeLU 是非线形函数,
即所以不能采用行并行,需要采用列并行。
此时,B 需要采用行并行。如果 B 采用列并行的话,则需要进行一次 all-reduce 同步。
Dropout 是按照一定比例随机丢弃一些参数,因此 Dropout 前必须进行一次 all-reduce 同步。
Self-Attention
multi-head attention 机制中每个 attention 都是独立的 QKV 矩阵,每个 GPU 上计算部分 attention 就行。因此要求 attention head 可以被 tp_size 整除。否则会报错如下(Qwen-14b 设置 tp=3):
ValueError: Total number of attention heads (40) must be divisible by tensor parallel size (3).
同样,Dropout 前需要进行一次 all-reduce 操作。
因此,一次 Transformer 推理需要进行 2 次 all-reduce 操作,qwen-14b 中 transformer 有 40 个,一次推理需要执行 81 一个 all-reduce 操作。跨节点部署推理服务时,网络通信将会是比较大的开销。
本文重点分析 vllm 如何实现分布式推理,具体 vllm 的推理过程可参考下方【01 推理过程解析】
参考链接
[01] 推理过程解析
https://zhuanlan.zhihu.com/p/649974825
[02] 【深度学习】【分布式训练】一文捋顺千亿模型训练技术:流水线并行、张量并行和 3D 并行
https://zhuanlan.zhihu.com/p/617087561
[03] Hugging Face 高效训练技术四:多 GPU 分布式训练(DP、PP、TP 、ZeRO)_zero-dp
https://blog.csdn.net/qq_56591814/article/details/134099476
[04] Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj