首页 > Python资料 博客日记
yolov8实战第三天——yolov8TensorRT部署(python推理)(保姆教学)
2024-02-25 02:00:06Python资料围观355次
在上一篇中我们使用自己的数据集训练了一个yolov8检测模型,best.py。
yolov8实战第一天——yolov8部署并训练自己的数据集(保姆式教程)-CSDN博客
yolov8实战第二天——yolov8训练结果分析(保姆式解读)-CSDN博客
接下要对best.py进行TensorRT优化并部署。
TensorRT是一种高性能深度学习推理优化器和运行时加速库,可以为深度学习应用提供低延迟、高吞吐率的部署推理。
TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。
TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高效的部署推理。
一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。
由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。
为了提高部署推理的速度,出现了很多模型优化的方法,如:模型压缩、剪枝、量化、知识蒸馏等,这些一般都是在训练阶段实现优化。
而TensorRT 则是对训练好的模型进行优化,通过优化网络计算图提高模型效率。
一、安装TensorRT
下载TensorRT 。
我下载的是8.6里画黑线的那个。
将 TensorRT-8.6.1.6\include中头文件 copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\include
将TensorRT-8.6.1.6\lib 中所有lib文件 copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\lib\x64
将TensorRT-8.6.1.6\lib 中所有dll文件copy 到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\bin
在python文件夹中找到适合自己的。
pip install tensorrt-8.6.1-cp310-none-win_amd64.whl
至此TensorRT安装完成。
二、pt转onnx:
GitHub - triple-Mu/YOLOv8-TensorRT: YOLOv8 using TensorRT accelerate !
参考着这个,下载,安装环境后。
安装onnx:
pip install onnx -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxsim -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i https://pypi.tuna.tsinghua.edu.cn/simple
生成onnx:
python export-det.py --weights yolov8n.pt --iou-thres 0.65 --conf-thres 0.25 --topk 100 --opset 11 --sim --input-shape 1 3 640 640 --device cuda:0
使用上篇文章中的老鼠模型做了测试:
onnx的测试代码:
import onnxruntime as rt
import numpy as np
import cv2
import matplotlib.pyplot as plt
def nms(pred, conf_thres, iou_thres):
conf = pred[..., 4] > conf_thres
box = pred[conf == True]
cls_conf = box[..., 5:]
cls = []
for i in range(len(cls_conf)):
cls.append(int(np.argmax(cls_conf[i])))
total_cls = list(set(cls))
output_box = []
for i in range(len(total_cls)):
clss = total_cls[i]
cls_box = []
for j in range(len(cls)):
if cls[j] == clss:
box[j][5] = clss
cls_box.append(box[j][:6])
cls_box = np.array(cls_box)
box_conf = cls_box[..., 4]
box_conf_sort = np.argsort(box_conf)
max_conf_box = cls_box[box_conf_sort[len(box_conf) - 1]]
output_box.append(max_conf_box)
cls_box = np.delete(cls_box, 0, 0)
while len(cls_box) > 0:
max_conf_box = output_box[len(output_box) - 1]
del_index = []
for j in range(len(cls_box)):
current_box = cls_box[j]
interArea = getInter(max_conf_box, current_box)
iou = getIou(max_conf_box, current_box, interArea)
if iou > iou_thres:
del_index.append(j)
cls_box = np.delete(cls_box, del_index, 0)
if len(cls_box) > 0:
output_box.append(cls_box[0])
cls_box = np.delete(cls_box, 0, 0)
return output_box
def getIou(box1, box2, inter_area):
box1_area = box1[2] * box1[3]
box2_area = box2[2] * box2[3]
union = box1_area + box2_area - inter_area
iou = inter_area / union
return iou
def getInter(box1, box2):
box1_x1, box1_y1, box1_x2, box1_y2 = box1[0] - box1[2] / 2, box1[1] - box1[3] / 2, \
box1[0] + box1[2] / 2, box1[1] + box1[3] / 2
box2_x1, box2_y1, box2_x2, box2_y2 = box2[0] - box2[2] / 2, box2[1] - box1[3] / 2, \
box2[0] + box2[2] / 2, box2[1] + box2[3] / 2
if box1_x1 > box2_x2 or box1_x2 < box2_x1:
return 0
if box1_y1 > box2_y2 or box1_y2 < box2_y1:
return 0
x_list = [box1_x1, box1_x2, box2_x1, box2_x2]
x_list = np.sort(x_list)
x_inter = x_list[2] - x_list[1]
y_list = [box1_y1, box1_y2, box2_y1, box2_y2]
y_list = np.sort(y_list)
y_inter = y_list[2] - y_list[1]
inter = x_inter * y_inter
return inter
def draw(img, xscale, yscale, pred):
img_ = img.copy()
if len(pred):
for detect in pred:
detect = [int((detect[0] - detect[2] / 2) * xscale), int((detect[1] - detect[3] / 2) * yscale),
int((detect[0]+detect[2] / 2) * xscale), int((detect[1]+detect[3] / 2) * yscale)]
img_ = cv2.rectangle(img, (detect[0], detect[1]), (detect[2], detect[3]), (0, 255, 0), 1)
return img_
if __name__ == '__main__':
height, width = 640, 640
img0 = cv2.imread('mouse-4-6-0004.jpg')
x_scale = img0.shape[1] / width
y_scale = img0.shape[0] / height
img = img0 / 255.
img = cv2.resize(img, (width, height))
img = np.transpose(img, (2, 0, 1))
data = np.expand_dims(img, axis=0)
sess = rt.InferenceSession('best.onnx')
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred = sess.run([label_name], {input_name: data.astype(np.float32)})[0]
pred = np.squeeze(pred)
pred = np.transpose(pred, (1, 0))
pred_class = pred[..., 4:]
pred_conf = np.max(pred_class, axis=-1)
pred = np.insert(pred, 4, pred_conf, axis=-1)
result = nms(pred, 0.3, 0.45)
ret_img = draw(img0, x_scale, y_scale, result)
ret_img = ret_img[:, :, ::-1]
plt.imshow(ret_img)
plt.show()
三、TensorRT部署
导出engine模型:
python build.py --weights yolov8n.onnx --iou-thres 0.65 --conf-thres 0.25 --topk 100 --fp16 --device cuda:0
等待一会,engine成功导出。
使用python脚本进行推理:
python infer-det.py --engine yolov8n.engine --imgs data --show --out-dir outputs --out-dir outputs --device cuda:0
infer-det.py:
from models import TRTModule # isort:skip
import argparse
from pathlib import Path
import cv2
import torch
from config import CLASSES, COLORS
from models.torch_utils import det_postprocess
from models.utils import blob, letterbox, path_to_list
def main(args: argparse.Namespace) -> None:
device = torch.device(args.device)
Engine = TRTModule(args.engine, device)
H, W = Engine.inp_info[0].shape[-2:]
# set desired output names order
Engine.set_desired(['num_dets', 'bboxes', 'scores', 'labels'])
images = path_to_list(args.imgs)
save_path = Path(args.out_dir)
if not args.show and not save_path.exists():
save_path.mkdir(parents=True, exist_ok=True)
for image in images:
save_image = save_path / image.name
bgr = cv2.imread(str(image))
draw = bgr.copy()
bgr, ratio, dwdh = letterbox(bgr, (W, H))
rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
tensor = blob(rgb, return_seg=False)
dwdh = torch.asarray(dwdh * 2, dtype=torch.float32, device=device)
tensor = torch.asarray(tensor, device=device)
# inference
data = Engine(tensor)
bboxes, scores, labels = det_postprocess(data)
if bboxes.numel() == 0:
# if no bounding box
print(f'{image}: no object!')
continue
bboxes -= dwdh
bboxes /= ratio
for (bbox, score, label) in zip(bboxes, scores, labels):
bbox = bbox.round().int().tolist()
cls_id = int(label)
cls = CLASSES[cls_id]
color = COLORS[cls]
cv2.rectangle(draw, bbox[:2], bbox[2:], color, 2)
cv2.putText(draw,
f'{cls}:{score:.3f}', (bbox[0], bbox[1] - 2),
cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255],
thickness=2)
if args.show:
cv2.imshow('result', draw)
cv2.waitKey(0)
else:
cv2.imwrite(str(save_image), draw)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--engine', type=str, help='Engine file')
parser.add_argument('--imgs', type=str, help='Images file')
parser.add_argument('--show',
action='store_true',
help='Show the detection results')
parser.add_argument('--out-dir',
type=str,
default='./output',
help='Path to output file')
parser.add_argument('--device',
type=str,
default='cuda:0',
help='TensorRT infer device')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
main(args)
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj