首页 > Python资料 博客日记
python+paddleocr 进行图像识别、找到文字在屏幕中的位置
2024-02-25 17:00:04Python资料围观423次
目录
前言
最近在做自动化测试,因为是处理过的界面,所以使用pywinauto,LDTP获取控件进行操作的方法不可行,于是选择使用pyautogui进行图像识别与键盘鼠标控制。
但是单独使用pyautogui测试效率很低,并且pyautogui图片识别并没有opencv识别率高,所以需要结合其他图像库使用。
在使用的过程中发现,仅仅使用图像识别有时匹配度比较低,使用opencv进行图像识别定位,是图像像素太小查找成功的几率大大降低,于是想到使用OCR文本识别的方法对其进行查找,结合在一起使用,大大提高了工作效率。
OCR图像识别我试过Tessract-ocr和paddleocr,发现Tessract-ocr识别正确率太低了,实在不推荐使用。
有关paddleocr的信息可以去github上查看:https://github.com/PaddlePaddle/PaddleOCR
于是想要记录一下,也提供给大家参考学习。
1、安装paddleocr
使用以下命令进行安装:
pip install paddleocr
2、安装PIL
PythonPIL(Python Image Library)是一款用来处理图像的开源库,可实现图像的读取、格式转换、简单编辑、保存等功能。在Python中使用PIL库可以很方便地对图像进行操作。
与 Pillow 相比,OpenCV 和 Scikit-image 的功能更为丰富,所以使用起来也更为复杂,主要应用于机器视觉、图像分析等领域,比如众所周知的“人脸识别”应用 。
在这里我们使用PIL对图像进行处理。
使用以下命令进行安装:
pip install pillow
3、安装numpy
NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
我们使用numpy用来处理屏幕截图,把其转换为矩阵,再进行下一步处理。
使用以下命令进行安装:
pip install numpy
4、 安装pyautogui
pyautogui是一个Python模块,可以模拟用户在屏幕上的鼠标和键盘操作。它可以自动化鼠标和键盘输入,可以用于各种自动化任务,例如GUI测试、自动化数据输入、自动化游戏玩法等。pyautogui提供了一组函数来控制鼠标和键盘,例如移动鼠标、单击、双击、右键单击、按下和释放键等。它还提供了一些额外的功能,例如捕捉屏幕截图、识别颜色和图像等,以及其他一些实用工具,例如获取屏幕尺寸和鼠标位置。
使用以下命令进行安装:
pip install pyautogui
5、进行文本识别
安装好库之后,在脚本文件开头导入
import numpy
from pyautogui import *
from PIL import Image
import numpy as np
from paddleocr import PaddleOCR, draw_ocr
def get_curtime(time_format="%Y-%m-%d %H:%M:%S"):
curTime = time.localtime()
curTime = time.strftime(time_format, curTime)
return curTime
def ocr_img_text(path="", saveimg=False, printResult=False):
'''
图像文字识别
:param path:图片路径
:param saveimg:是否把结果保存成图片
:param printResult:是否打印出识别结果
:return:result,img_name
'''
image = path
# 图片路径为空就默认获取屏幕截图
if image == "":
image = screenshot() #使用pyautogui进行截图操作
image = np.array(image)
else:
# 不为空就打开
image = Image.open(image).convert('RGB')
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
result = ocr.ocr(image, cls=True)
if printResult is True:
for line in result:
for word in line:
print(word)
# 识别出来的文字保存为图片
img_name = "ImgTextOCR-img-" + get_curtime("%Y%m%d%H%M%S") + ".jpg"
if saveimg is True:
boxes = [detection[0] for line in result for detection in line] # Nested loop added
txts = [detection[1][0] for line in result for detection in line] # Nested loop added
scores = [detection[1][1] for line in result for detection in line] # Nested loop added
im_show = draw_ocr(image, boxes, txts, scores)
im_show = Image.fromarray(im_show)
im_show.save(img_name)
return result, img_name
在main中调用,不指定path路径,默认使用屏幕截图进行文本识别,设置输出识别结果到控制台,设置保存识别结果为图片,运行:
if __name__ == '__main__':
ocr_img_text(saveimg=True, printResult=True)
6、识别结果
识别的屏幕截图为一篇博客:
等待3-10s输出结果,识别文本越多,速度越慢,运行结果如下:
[2023/12/06 10:03:52] ppocr DEBUG: Namespace(help='==SUPPRESS==', use_gpu=False, use_xpu=False, use_npu=False, ir_optim=True, use_tensorrt=False, min_subgraph_size=15, precision='fp32', gpu_mem=500, gpu_id=0, image_dir=None, page_num=0, det_algorithm='DB', det_model_dir='C:\\Users\\qxk20/.paddleocr/whl\\det\\ch\\ch_PP-OCRv4_det_infer', det_limit_side_len=960, det_limit_type='max', det_box_type='quad', det_db_thresh=0.3, det_db_box_thresh=0.6, det_db_unclip_ratio=1.5, max_batch_size=10, use_dilation=False, det_db_score_mode='fast', det_east_score_thresh=0.8, det_east_cover_thresh=0.1, det_east_nms_thresh=0.2, det_sast_score_thresh=0.5, det_sast_nms_thresh=0.2, det_pse_thresh=0, det_pse_box_thresh=0.85, det_pse_min_area=16, det_pse_scale=1, scales=[8, 16, 32], alpha=1.0, beta=1.0, fourier_degree=5, rec_algorithm='SVTR_LCNet', rec_model_dir='C:\\Users\\qxk20/.paddleocr/whl\\rec\\ch\\ch_PP-OCRv4_rec_infer', rec_image_inverse=True, rec_image_shape='3, 48, 320', rec_batch_num=6, max_text_length=25, rec_char_dict_path='C:\\Users\\qxk20\\AppData\\Local\\Programs\\Python\\Python39\\lib\\site-packages\\paddleocr\\ppocr\\utils\\ppocr_keys_v1.txt', use_space_char=True, vis_font_path='./doc/fonts/simfang.ttf', drop_score=0.5, e2e_algorithm='PGNet', e2e_model_dir=None, e2e_limit_side_len=768, e2e_limit_type='max', e2e_pgnet_score_thresh=0.5, e2e_char_dict_path='./ppocr/utils/ic15_dict.txt', e2e_pgnet_valid_set='totaltext', e2e_pgnet_mode='fast', use_angle_cls=True, cls_model_dir='C:\\Users\\qxk20/.paddleocr/whl\\cls\\ch_ppocr_mobile_v2.0_cls_infer', cls_image_shape='3, 48, 192', label_list=['0', '180'], cls_batch_num=6, cls_thresh=0.9, enable_mkldnn=False, cpu_threads=10, use_pdserving=False, warmup=False, sr_model_dir=None, sr_image_shape='3, 32, 128', sr_batch_num=1, draw_img_save_dir='./inference_results', save_crop_res=False, crop_res_save_dir='./output', use_mp=False, total_process_num=1, process_id=0, benchmark=False, save_log_path='./log_output/', show_log=True, use_onnx=False, output='./output', table_max_len=488, table_algorithm='TableAttn', table_model_dir=None, merge_no_span_structure=True, table_char_dict_path=None, layout_model_dir=None, layout_dict_path=None, layout_score_threshold=0.5, layout_nms_threshold=0.5, kie_algorithm='LayoutXLM', ser_model_dir=None, re_model_dir=None, use_visual_backbone=True, ser_dict_path='../train_data/XFUND/class_list_xfun.txt', ocr_order_method=None, mode='structure', image_orientation=False, layout=True, table=True, ocr=True, recovery=False, use_pdf2docx_api=False, invert=False, binarize=False, alphacolor=(255, 255, 255), lang='ch', det=True, rec=True, type='ocr', ocr_version='PP-OCRv4', structure_version='PP-StructureV2')
[2023/12/06 10:03:53] ppocr DEBUG: dt_boxes num : 95, elapsed : 0.4894998073577881
[2023/12/06 10:03:53] ppocr DEBUG: cls num : 95, elapsed : 0.6584289073944092
[2023/12/06 10:04:04] ppocr DEBUG: rec_res num : 95, elapsed : 10.509709119796753
[[[12.0, 14.0], [32.0, 14.0], [32.0, 32.0], [12.0, 32.0]], ('司', 0.8348841071128845)]
[[[52.0, 12.0], [260.0, 12.0], [260.0, 32.0], [52.0, 32.0]], ('Cpython自动化神器:pyautogui-X', 0.9596936106681824)]
[[[84.0, 54.0], [140.0, 54.0], [140.0, 75.0], [84.0, 75.0]], ('Q', 0.6443824172019958)]
[[[272.0, 52.0], [794.0, 52.0], [794.0, 77.0], [272.0, 77.0]], (' o 日 https://blog.csdn.net/q_61260911/article/details/129885971', 0.9266524910926819)]
[[[1570.0, 54.0], [1648.0, 54.0], [1648.0, 75.0], [1570.0, 75.0]], ('回器', 0.5518691539764404)]
[[[342.0, 103.0], [410.0, 103.0], [410.0, 125.0], [342.0, 125.0]], ('文章目录', 0.9994025230407715)]
[[[408.0, 133.0], [553.0, 129.0], [554.0, 157.0], [409.0, 161.0]], ('、pyautogui是什么?', 0.9903998374938965)]
[[[418.0, 159.0], [494.0, 159.0], [494.0, 187.0], [418.0, 187.0]], ('使用步骤', 0.9996742010116577)]
[[[1350.0, 151.0], [1386.0, 151.0], [1386.0, 175.0], [1350.0, 175.0]], ('目录', 0.9999495148658752)]
[[[436.0, 185.0], [554.0, 185.0], [554.0, 212.0], [436.0, 212.0]], ('1.安装和引入库', 0.9996572732925415)]
[[[436.0, 210.0], [520.0, 210.0], [520.0, 238.0], [436.0, 238.0]], ('2.基本操作', 0.9997453689575195)]
[[[1350.0, 225.0], [1497.0, 220.0], [1498.0, 248.0], [1351.0, 252.0]], ('一、pyautogu是什么?', 0.9643535017967224)]
[[[494.0, 240.0], [584.0, 240.0], [584.0, 262.0], [494.0, 262.0]], ('(1)鼠标控制', 0.9999212026596069)]
[[[496.0, 266.0], [586.0, 266.0], [586.0, 288.0], [496.0, 288.0]], ('(2)键盘控制', 0.9985042810440063)]
[[[1348.0, 261.0], [1443.0, 256.0], [1444.0, 283.0], [1349.0, 288.0]], ('二、使用步骤', 0.9997739791870117)]
[[[494.0, 292.0], [586.0, 292.0], [586.0, 314.0], [494.0, 314.0]], ('(3)屏幕截图', 0.9958118200302124)]
[[[1376.0, 298.0], [1478.0, 298.0], [1478.0, 320.0], [1376.0, 320.0]], ('1.安装和引入库', 0.9996544122695923)]
[[[496.0, 318.0], [618.0, 318.0], [618.0, 339.0], [496.0, 339.0]], ('(4)图片位置识别', 0.9985911250114441)]
[[[496.0, 343.0], [620.0, 343.0], [620.0, 365.0], [496.0, 365.0]], ('(6)获取鼠标位置', 0.9997221827507019)]
[[[1374.0, 334.0], [1448.0, 334.0], [1448.0, 355.0], [1374.0, 355.0]], ('2.基本操作', 0.9990530014038086)]
[[[492.0, 367.0], [556.0, 367.0], [556.0, 395.0], [492.0, 395.0]], ('(7)其他', 0.9966148138046265)]
[[[1406.0, 369.0], [1490.0, 369.0], [1490.0, 391.0], [1406.0, 391.0]], ('(1)鼠标控制', 0.9988077878952026)]
[[[392.0, 397.0], [556.0, 397.0], [556.0, 423.0], [392.0, 423.0]], ('三、自动发消息给对象', 0.9993067979812622)]
[[[1408.0, 405.0], [1488.0, 405.0], [1488.0, 427.0], [1408.0, 427.0]], ('(2)键盘控制', 0.9968889951705933)]
[[[436.0, 425.0], [520.0, 425.0], [520.0, 447.0], [436.0, 447.0]], ('1.截图操作', 0.9997608661651611)]
[[[1408.0, 441.0], [1490.0, 441.0], [1490.0, 463.0], [1408.0, 463.0]], ('(3)屏幕截图', 0.9955319762229919)]
[[[1894.0, 437.0], [1914.0, 437.0], [1914.0, 457.0], [1894.0, 457.0]], ('史', 0.6741142272949219)]
[[[436.0, 449.0], [538.0, 449.0], [538.0, 476.0], [436.0, 476.0]], ('2.python代码', 0.9998586773872375)]
[[[387.0, 472.0], [467.0, 477.0], [465.0, 505.0], [385.0, 500.0]], ('完整代码"', 0.9178546667098999)]
[[[1404.0, 475.0], [1517.0, 470.0], [1518.0, 498.0], [1405.0, 503.0]], ('(4)图片位置识别', 0.9936147332191467)]
[[[390.0, 504.0], [428.0, 504.0], [428.0, 528.0], [390.0, 528.0]], ('总结', 0.9999614357948303)]
[[[1404.0, 511.0], [1521.0, 506.0], [1522.0, 534.0], [1405.0, 538.0]], ('(6)获取鼠标位置', 0.9689271450042725)]
[[[1406.0, 550.0], [1460.0, 550.0], [1460.0, 572.0], [1406.0, 572.0]], ('(7)其他', 0.9757314920425415)]
[[[340.0, 604.0], [575.0, 597.0], [576.0, 631.0], [341.0, 638.0]], ('一、pyautogui°是什么?', 0.9466922879219055)]
[[[338.0, 641.0], [1290.0, 639.0], [1290.0, 667.0], [338.0, 669.0]], ('pyautogui是一个Python模块α,可以模拟用户在屏幕上的鼠标和键盘操作。它可以自动化鼠标和键盘输入,可以用于各种自动化任务,', 0.9859745502471924)]
[[[1414.0, 633.0], [1442.0, 633.0], [1442.0, 649.0], [1414.0, 649.0]], ('目懿', 0.9915087223052979)]
[[[1418.0, 651.0], [1458.0, 651.0], [1458.0, 665.0], [1418.0, 665.0]], ('龄2年', 0.9997161030769348)]
[[[1474.0, 647.0], [1556.0, 647.0], [1556.0, 669.0], [1474.0, 669.0]], ('暂无认证', 0.9993581175804138)]
[[[340.0, 667.0], [1310.0, 667.0], [1310.0, 695.0], [340.0, 695.0]], ('例如GUI测试、自动化数据输入、自动化游戏玩法等。pyautogui提供了一组函数来控制鼠标和键盘,例如移动鼠标、单击、双击、右键单', 0.9897662997245789)]
[[[338.0, 691.0], [1306.0, 691.0], [1306.0, 717.0], [338.0, 717.0]], ('击、按下和释放键等。它还提供了一些额外的功能,例如捕捉屏幕截图、识别颜色和图像等,以及其他一些实用工具,例如获取屏幕尺寸', 0.9956715703010559)]
[[[1406.0, 689.0], [1464.0, 689.0], [1464.0, 711.0], [1406.0, 711.0]], ('126万+', 0.9962350130081177)]
[[[1456.0, 689.0], [1510.0, 689.0], [1510.0, 711.0], [1456.0, 711.0]], ('15万+', 0.9973534345626831)]
[[[1524.0, 689.0], [1562.0, 689.0], [1562.0, 711.0], [1524.0, 711.0]], ('2万+', 0.9968100190162659)]
[[[1360.0, 715.0], [1396.0, 715.0], [1396.0, 737.0], [1360.0, 737.0]], ('原创', 0.9999445676803589)]
[[[1410.0, 717.0], [1460.0, 717.0], [1460.0, 735.0], [1410.0, 735.0]], ('周排名', 0.9998628497123718)]
[[[1460.0, 715.0], [1512.0, 715.0], [1512.0, 737.0], [1460.0, 737.0]], ('总排名', 0.9999186396598816)]
[[[1526.0, 715.0], [1562.0, 715.0], [1562.0, 737.0], [1526.0, 737.0]], ('访问', 0.9992227554321289)]
[[[1586.0, 713.0], [1614.0, 713.0], [1614.0, 737.0], [1586.0, 737.0]], ('等级', 0.9991192817687988)]
[[[342.0, 723.0], [430.0, 723.0], [430.0, 744.0], [342.0, 744.0]], ('和鼠标位置。', 0.9976329803466797)]
[[[1364.0, 762.0], [1390.0, 762.0], [1390.0, 778.0], [1364.0, 778.0]], ('323', 0.9994524121284485)]
[[[1420.0, 762.0], [1446.0, 762.0], [1446.0, 778.0], [1420.0, 778.0]], ('205', 0.9996988773345947)]
[[[1478.0, 762.0], [1498.0, 762.0], [1498.0, 778.0], [1478.0, 778.0]], ('92', 0.9983443021774292)]
[[[1534.0, 760.0], [1554.0, 760.0], [1554.0, 778.0], [1534.0, 778.0]], ('16', 0.9997827410697937)]
[[[342.0, 770.0], [470.0, 770.0], [470.0, 798.0], [342.0, 798.0]], ('二、使用步骤', 0.9999136924743652)]
[[[1588.0, 762.0], [1614.0, 762.0], [1614.0, 780.0], [1588.0, 780.0]], ('286', 0.9995718002319336)]
[[[1362.0, 786.0], [1392.0, 786.0], [1392.0, 802.0], [1362.0, 802.0]], ('积分', 0.9998078942298889)]
[[[1416.0, 786.0], [1446.0, 786.0], [1446.0, 802.0], [1416.0, 802.0]], ('粉丝', 0.999700665473938)]
[[[1472.0, 786.0], [1504.0, 786.0], [1504.0, 802.0], [1472.0, 802.0]], ('获赞', 0.9995585680007935)]
[[[1528.0, 786.0], [1560.0, 786.0], [1560.0, 802.0], [1528.0, 802.0]], ('评论', 0.999963641166687)]
[[[1588.0, 786.0], [1614.0, 786.0], [1614.0, 802.0], [1588.0, 802.0]], ('收藏', 0.9930889010429382)]
[[[1664.0, 812.0], [1692.0, 812.0], [1692.0, 836.0], [1664.0, 836.0]], ('目', 0.6718043088912964)]
[[[340.0, 824.0], [470.0, 824.0], [470.0, 852.0], [340.0, 852.0]], ('1.安装和引入库', 0.9993049502372742)]
[[[366.0, 859.0], [572.0, 864.0], [572.0, 898.0], [366.0, 893.0]], (' 1| pip install pyautogui', 0.9545071125030518)]
[[[1664.0, 860.0], [1692.0, 860.0], [1692.0, 891.0], [1664.0, 891.0]], ('8', 0.7358648180961609)]
[[[1404.0, 874.0], [1428.0, 874.0], [1428.0, 889.0], [1404.0, 889.0]], ('私信', 0.9994027018547058)]
[[[1546.0, 874.0], [1572.0, 874.0], [1572.0, 889.0], [1546.0, 889.0]], ('关注', 0.9985920190811157)]
[[[396.0, 925.0], [528.0, 927.0], [528.0, 949.0], [396.0, 947.0]], ('import pyautogui', 0.995620846748352)]
[[[378.0, 991.0], [432.0, 991.0], [432.0, 1011.0], [378.0, 1011.0]], ('泪懿(', 0.8541081547737122)]
[[[424.0, 991.0], [474.0, 991.0], [474.0, 1012.0], [424.0, 1012.0]], ('(关注', 0.8576037287712097)]
[[[908.0, 991.0], [1096.0, 991.0], [1096.0, 1011.0], [908.0, 1011.0]], ('1073', 0.9963844418525696)]
[[[1238.0, 991.0], [1302.0, 991.0], [1302.0, 1012.0], [1238.0, 1012.0]], ('专栏目录', 0.999904990196228)]
[[[906.0, 1048.0], [926.0, 1048.0], [926.0, 1064.0], [906.0, 1064.0]], ('?', 0.508362352848053)]
[[[1214.0, 1048.0], [1234.0, 1048.0], [1234.0, 1064.0], [1214.0, 1064.0]], ('W', 0.8730343580245972)]
[[[1844.0, 1042.0], [1880.0, 1042.0], [1880.0, 1058.0], [1844.0, 1058.0]], ('10:03', 0.9939872026443481)]
[[[1818.0, 1054.0], [1880.0, 1054.0], [1880.0, 1074.0], [1818.0, 1074.0]], ('2023/12/6', 0.9981465935707092)]
进程已结束,退出代码为 0
信息比较多,我们提取一下,最终识别的结果如下,可以看出内容识别正确程度还是比较高的:
[[[12.0, 14.0], [32.0, 14.0], [32.0, 32.0], [12.0, 32.0]], ('司', 0.8348841071128845)]
[[[52.0, 12.0], [260.0, 12.0], [260.0, 32.0], [52.0, 32.0]], ('Cpython自动化神器:pyautogui-X', 0.9596936106681824)]
[[[84.0, 54.0], [140.0, 54.0], [140.0, 75.0], [84.0, 75.0]], ('Q', 0.6443824172019958)]
[[[272.0, 52.0], [794.0, 52.0], [794.0, 77.0], [272.0, 77.0]], (' o 日 https://blog.csdn.net/q_61260911/article/details/129885971', 0.9266524910926819)]
[[[1570.0, 54.0], [1648.0, 54.0], [1648.0, 75.0], [1570.0, 75.0]], ('回器', 0.5518691539764404)]
[[[342.0, 103.0], [410.0, 103.0], [410.0, 125.0], [342.0, 125.0]], ('文章目录', 0.9994025230407715)]
[[[408.0, 133.0], [553.0, 129.0], [554.0, 157.0], [409.0, 161.0]], ('、pyautogui是什么?', 0.9903998374938965)]
[[[418.0, 159.0], [494.0, 159.0], [494.0, 187.0], [418.0, 187.0]], ('使用步骤', 0.9996742010116577)]
[[[1350.0, 151.0], [1386.0, 151.0], [1386.0, 175.0], [1350.0, 175.0]], ('目录', 0.9999495148658752)]
[[[436.0, 185.0], [554.0, 185.0], [554.0, 212.0], [436.0, 212.0]], ('1.安装和引入库', 0.9996572732925415)]
[[[436.0, 210.0], [520.0, 210.0], [520.0, 238.0], [436.0, 238.0]], ('2.基本操作', 0.9997453689575195)]
[[[1350.0, 225.0], [1497.0, 220.0], [1498.0, 248.0], [1351.0, 252.0]], ('一、pyautogu是什么?', 0.9643535017967224)]
[[[494.0, 240.0], [584.0, 240.0], [584.0, 262.0], [494.0, 262.0]], ('(1)鼠标控制', 0.9999212026596069)]
[[[496.0, 266.0], [586.0, 266.0], [586.0, 288.0], [496.0, 288.0]], ('(2)键盘控制', 0.9985042810440063)]
[[[1348.0, 261.0], [1443.0, 256.0], [1444.0, 283.0], [1349.0, 288.0]], ('二、使用步骤', 0.9997739791870117)]
[[[494.0, 292.0], [586.0, 292.0], [586.0, 314.0], [494.0, 314.0]], ('(3)屏幕截图', 0.9958118200302124)]
[[[1376.0, 298.0], [1478.0, 298.0], [1478.0, 320.0], [1376.0, 320.0]], ('1.安装和引入库', 0.9996544122695923)]
[[[496.0, 318.0], [618.0, 318.0], [618.0, 339.0], [496.0, 339.0]], ('(4)图片位置识别', 0.9985911250114441)]
[[[496.0, 343.0], [620.0, 343.0], [620.0, 365.0], [496.0, 365.0]], ('(6)获取鼠标位置', 0.9997221827507019)]
[[[1374.0, 334.0], [1448.0, 334.0], [1448.0, 355.0], [1374.0, 355.0]], ('2.基本操作', 0.9990530014038086)]
[[[492.0, 367.0], [556.0, 367.0], [556.0, 395.0], [492.0, 395.0]], ('(7)其他', 0.9966148138046265)]
[[[1406.0, 369.0], [1490.0, 369.0], [1490.0, 391.0], [1406.0, 391.0]], ('(1)鼠标控制', 0.9988077878952026)]
[[[392.0, 397.0], [556.0, 397.0], [556.0, 423.0], [392.0, 423.0]], ('三、自动发消息给对象', 0.9993067979812622)]
[[[1408.0, 405.0], [1488.0, 405.0], [1488.0, 427.0], [1408.0, 427.0]], ('(2)键盘控制', 0.9968889951705933)]
[[[436.0, 425.0], [520.0, 425.0], [520.0, 447.0], [436.0, 447.0]], ('1.截图操作', 0.9997608661651611)]
[[[1408.0, 441.0], [1490.0, 441.0], [1490.0, 463.0], [1408.0, 463.0]], ('(3)屏幕截图', 0.9955319762229919)]
[[[1894.0, 437.0], [1914.0, 437.0], [1914.0, 457.0], [1894.0, 457.0]], ('史', 0.6741142272949219)]
[[[436.0, 449.0], [538.0, 449.0], [538.0, 476.0], [436.0, 476.0]], ('2.python代码', 0.9998586773872375)]
[[[387.0, 472.0], [467.0, 477.0], [465.0, 505.0], [385.0, 500.0]], ('完整代码"', 0.9178546667098999)]
[[[1404.0, 475.0], [1517.0, 470.0], [1518.0, 498.0], [1405.0, 503.0]], ('(4)图片位置识别', 0.9936147332191467)]
[[[390.0, 504.0], [428.0, 504.0], [428.0, 528.0], [390.0, 528.0]], ('总结', 0.9999614357948303)]
[[[1404.0, 511.0], [1521.0, 506.0], [1522.0, 534.0], [1405.0, 538.0]], ('(6)获取鼠标位置', 0.9689271450042725)]
[[[1406.0, 550.0], [1460.0, 550.0], [1460.0, 572.0], [1406.0, 572.0]], ('(7)其他', 0.9757314920425415)]
[[[340.0, 604.0], [575.0, 597.0], [576.0, 631.0], [341.0, 638.0]], ('一、pyautogui°是什么?', 0.9466922879219055)]
[[[338.0, 641.0], [1290.0, 639.0], [1290.0, 667.0], [338.0, 669.0]], ('pyautogui是一个Python模块α,可以模拟用户在屏幕上的鼠标和键盘操作。它可以自动化鼠标和键盘输入,可以用于各种自动化任务,', 0.9859745502471924)]
[[[1414.0, 633.0], [1442.0, 633.0], [1442.0, 649.0], [1414.0, 649.0]], ('目懿', 0.9915087223052979)]
[[[1418.0, 651.0], [1458.0, 651.0], [1458.0, 665.0], [1418.0, 665.0]], ('龄2年', 0.9997161030769348)]
[[[1474.0, 647.0], [1556.0, 647.0], [1556.0, 669.0], [1474.0, 669.0]], ('暂无认证', 0.9993581175804138)]
[[[340.0, 667.0], [1310.0, 667.0], [1310.0, 695.0], [340.0, 695.0]], ('例如GUI测试、自动化数据输入、自动化游戏玩法等。pyautogui提供了一组函数来控制鼠标和键盘,例如移动鼠标、单击、双击、右键单', 0.9897662997245789)]
[[[338.0, 691.0], [1306.0, 691.0], [1306.0, 717.0], [338.0, 717.0]], ('击、按下和释放键等。它还提供了一些额外的功能,例如捕捉屏幕截图、识别颜色和图像等,以及其他一些实用工具,例如获取屏幕尺寸', 0.9956715703010559)]
[[[1406.0, 689.0], [1464.0, 689.0], [1464.0, 711.0], [1406.0, 711.0]], ('126万+', 0.9962350130081177)]
[[[1456.0, 689.0], [1510.0, 689.0], [1510.0, 711.0], [1456.0, 711.0]], ('15万+', 0.9973534345626831)]
[[[1524.0, 689.0], [1562.0, 689.0], [1562.0, 711.0], [1524.0, 711.0]], ('2万+', 0.9968100190162659)]
[[[1360.0, 715.0], [1396.0, 715.0], [1396.0, 737.0], [1360.0, 737.0]], ('原创', 0.9999445676803589)]
[[[1410.0, 717.0], [1460.0, 717.0], [1460.0, 735.0], [1410.0, 735.0]], ('周排名', 0.9998628497123718)]
[[[1460.0, 715.0], [1512.0, 715.0], [1512.0, 737.0], [1460.0, 737.0]], ('总排名', 0.9999186396598816)]
[[[1526.0, 715.0], [1562.0, 715.0], [1562.0, 737.0], [1526.0, 737.0]], ('访问', 0.9992227554321289)]
[[[1586.0, 713.0], [1614.0, 713.0], [1614.0, 737.0], [1586.0, 737.0]], ('等级', 0.9991192817687988)]
[[[342.0, 723.0], [430.0, 723.0], [430.0, 744.0], [342.0, 744.0]], ('和鼠标位置。', 0.9976329803466797)]
[[[1364.0, 762.0], [1390.0, 762.0], [1390.0, 778.0], [1364.0, 778.0]], ('323', 0.9994524121284485)]
[[[1420.0, 762.0], [1446.0, 762.0], [1446.0, 778.0], [1420.0, 778.0]], ('205', 0.9996988773345947)]
[[[1478.0, 762.0], [1498.0, 762.0], [1498.0, 778.0], [1478.0, 778.0]], ('92', 0.9983443021774292)]
[[[1534.0, 760.0], [1554.0, 760.0], [1554.0, 778.0], [1534.0, 778.0]], ('16', 0.9997827410697937)]
[[[342.0, 770.0], [470.0, 770.0], [470.0, 798.0], [342.0, 798.0]], ('二、使用步骤', 0.9999136924743652)]
[[[1588.0, 762.0], [1614.0, 762.0], [1614.0, 780.0], [1588.0, 780.0]], ('286', 0.9995718002319336)]
[[[1362.0, 786.0], [1392.0, 786.0], [1392.0, 802.0], [1362.0, 802.0]], ('积分', 0.9998078942298889)]
[[[1416.0, 786.0], [1446.0, 786.0], [1446.0, 802.0], [1416.0, 802.0]], ('粉丝', 0.999700665473938)]
[[[1472.0, 786.0], [1504.0, 786.0], [1504.0, 802.0], [1472.0, 802.0]], ('获赞', 0.9995585680007935)]
[[[1528.0, 786.0], [1560.0, 786.0], [1560.0, 802.0], [1528.0, 802.0]], ('评论', 0.999963641166687)]
[[[1588.0, 786.0], [1614.0, 786.0], [1614.0, 802.0], [1588.0, 802.0]], ('收藏', 0.9930889010429382)]
[[[1664.0, 812.0], [1692.0, 812.0], [1692.0, 836.0], [1664.0, 836.0]], ('目', 0.6718043088912964)]
[[[340.0, 824.0], [470.0, 824.0], [470.0, 852.0], [340.0, 852.0]], ('1.安装和引入库', 0.9993049502372742)]
[[[366.0, 859.0], [572.0, 864.0], [572.0, 898.0], [366.0, 893.0]], (' 1| pip install pyautogui', 0.9545071125030518)]
[[[1664.0, 860.0], [1692.0, 860.0], [1692.0, 891.0], [1664.0, 891.0]], ('8', 0.7358648180961609)]
[[[1404.0, 874.0], [1428.0, 874.0], [1428.0, 889.0], [1404.0, 889.0]], ('私信', 0.9994027018547058)]
[[[1546.0, 874.0], [1572.0, 874.0], [1572.0, 889.0], [1546.0, 889.0]], ('关注', 0.9985920190811157)]
[[[396.0, 925.0], [528.0, 927.0], [528.0, 949.0], [396.0, 947.0]], ('import pyautogui', 0.995620846748352)]
[[[378.0, 991.0], [432.0, 991.0], [432.0, 1011.0], [378.0, 1011.0]], ('泪懿(', 0.8541081547737122)]
[[[424.0, 991.0], [474.0, 991.0], [474.0, 1012.0], [424.0, 1012.0]], ('(关注', 0.8576037287712097)]
[[[908.0, 991.0], [1096.0, 991.0], [1096.0, 1011.0], [908.0, 1011.0]], ('1073', 0.9963844418525696)]
[[[1238.0, 991.0], [1302.0, 991.0], [1302.0, 1012.0], [1238.0, 1012.0]], ('专栏目录', 0.999904990196228)]
[[[906.0, 1048.0], [926.0, 1048.0], [926.0, 1064.0], [906.0, 1064.0]], ('?', 0.508362352848053)]
[[[1214.0, 1048.0], [1234.0, 1048.0], [1234.0, 1064.0], [1214.0, 1064.0]], ('W', 0.8730343580245972)]
[[[1844.0, 1042.0], [1880.0, 1042.0], [1880.0, 1058.0], [1844.0, 1058.0]], ('10:03', 0.9939872026443481)]
[[[1818.0, 1054.0], [1880.0, 1054.0], [1880.0, 1074.0], [1818.0, 1074.0]], ('2023/12/6', 0.9981465935707092)]
保存图片结果如下:
截取部分查看,可以看到识别的文字区域,识别文字,识别可信度:
7、获取文字在图片/屏幕中的位置
我们可以看到识别完成的图像已经把文字区域框出来了,并且让我们仔细看输出的结果:
[[1350.0, 151.0], [1386.0, 151.0], [1386.0, 175.0], [1350.0, 175.0]], ('目录', 0.9999495148658752)]
我截取出“目录”的输出信息,发现输出的一个结果其实是由两个列表组成的,在这里为了方便我把这一个结果列表称为result,那么result[0]就是文字的四个角的位置,result[1]就是识别出的文字与confidence可信度。
那么要怎么样获取到某一个文字的位置呢?
可以看以下代码:
def ocr_get_txt_pos(path="", text=""):
'''
获取文字与位置对应map
:param path:图片路径,图片路径为空则默认获取当前屏幕截图
:param text: 筛选需要查找的内容,匹配所有位置
:return:list
'''
result, img_path = ocr_img_text(path, saveimg=True)
print("图片识别结果保存:", img_path)
#把结果列表的两个值分别再存为两个list
poslist = [detection[0][0] for line in result for detection in line] #取top一个点的位置
txtlist = [detection[1][0] for line in result for detection in line]
# 用list存文字与位置信息
find_txt_pos = []
items = 0
if text == "":
find_txt_pos = result
else:
for i in range(len(poslist)):
if txtlist[i] == text:
find_txt_pos.append(poslist[i])
items += 1
print(find_txt_pos)
return find_txt_pos
我们可以去通过输入想要寻找的文字,函数会返回文字的位置,关于图片的位置,我只取了一个点top去使用,如果有其他的需求可以取多个点自行修改。
跑一下:
if __name__ == '__main__':
ocr_get_txt_pos(text="目录")
找到的位置已经输出了:
对于有多个同样的文字,则会返回一个列表,存所有对应文字的信息:
if __name__ == '__main__':
ocr_get_txt_pos(text="二、使用步骤")
[2023/12/06 10:36:05] ppocr DEBUG: dt_boxes num : 102, elapsed : 0.44469285011291504
[2023/12/06 10:36:06] ppocr DEBUG: cls num : 102, elapsed : 0.7088828086853027
[2023/12/06 10:36:18] ppocr DEBUG: rec_res num : 102, elapsed : 11.481557846069336
图片识别结果保存: ImgTextOCR-img-20231206103618.jpg
[[1350.0, 286.0], [342.0, 798.0]]
获取到位置后就可以进行点击操作了!
8、pyautogui+paddleocr鼠标操作
如果要进行点击,pos的值其实需要一些偏移量:
if __name__ == '__main__':
pos_list = ocr_get_txt_pos(text="总结")
# 取一个点进行点击操作
pos_x, pos_y = pos_list[0]
moveTo(pos_x + 5, pos_y + 5)
click()
结果如下:
这样就操作成功了!
9、完整代码
import numpy
from pyautogui import *
from PIL import Image
import numpy as np
from paddleocr import PaddleOCR, draw_ocr
def get_curtime(time_format="%Y-%m-%d %H:%M:%S"):
curTime = time.localtime()
curTime = time.strftime(time_format, curTime)
return curTime
def ocr_get_txt_pos(path="", text=""):
'''
获取文字与位置对应map
:param path:图片路径,图片路径为空则默认获取当前屏幕截图
:param text: 筛选需要查找的内容,匹配所有位置
:return:list
'''
result, img_path = ocr_img_text(path, saveimg=True)
print("图片识别结果保存:", img_path)
poslist = [detection[0][0] for line in result for detection in line]
txtlist = [detection[1][0] for line in result for detection in line]
# 用list存文字与位置信息
find_txt_pos = []
items = 0
if text == "":
find_txt_pos = result
else:
for i in range(len(poslist)):
if txtlist[i] == text:
find_txt_pos.append(poslist[i])
items += 1
print(find_txt_pos)
return find_txt_pos
def ocr_img_text(path="", saveimg=False, printResult=False):
'''
图像文字识别
:param path:图片路径
:param saveimg:是否把结果保存成图片
:param printResult:是否打印出识别结果
:return:result,img_name
'''
image = path
# 图片路径为空就默认获取屏幕截图
if image == "":
image = screenshot()
image = np.array(image)
else:
# 不为空就打开
image = Image.open(image).convert('RGB')
ocr = PaddleOCR(use_angle_cls=True, lang="ch") # need to run only once to download and load model into memory
result = ocr.ocr(image, cls=True)
if printResult is True:
for line in result:
for word in line:
print(word)
# 识别出来的文字保存为图片
img_name = "ImgTextOCR-img-" + get_curtime("%Y%m%d%H%M%S") + ".jpg"
if saveimg is True:
boxes = [detection[0] for line in result for detection in line] # Nested loop added
txts = [detection[1][0] for line in result for detection in line] # Nested loop added
scores = [detection[1][1] for line in result for detection in line] # Nested loop added
im_show = draw_ocr(image, boxes, txts, scores)
im_show = Image.fromarray(im_show)
im_show.save(img_name)
return result, img_name
if __name__ == '__main__':
# test-1
ocr_img_text(saveimg=True, printResult=True)
#test-2
pos_list = ocr_get_txt_pos(text="二、使用步骤")
#test-3
pos_list = ocr_get_txt_pos(text="总结")
# 取一个点进行点击操作
pos_x, pos_y = pos_list[0]
moveTo(pos_x + 5, pos_y + 5)
click()
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj