首页 > Python资料 博客日记

曲线生成 | 图解Dubins曲线生成原理(附ROS C++/Python/Matlab仿真)

2024-03-06 07:00:05Python资料围观640

本篇文章分享曲线生成 | 图解Dubins曲线生成原理(附ROS C++/Python/Matlab仿真),对你有帮助的话记得收藏一下,看Python资料网收获更多编程知识

0 专栏介绍

🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。

🚀详情:图解自动驾驶中的运动规划(Motion Planning),附几十种规划算法


1 什么是Dubins曲线?

Dubins曲线是指由美国数学家 Lester Dubins 在20世纪50年代提出的一种特殊类型的最短路径曲线。这种曲线通常用于描述在给定转弯半径下的无人机、汽车或船只等载具的最短路径,其特点是起始点和终点处的切线方向和曲率都是已知的。

Dubins曲线包括直线段和最大转弯半径下的圆弧组成,通过合适的组合可以实现从一个姿态到另一个姿态的最短路径规划。这种曲线在航空、航海、自动驾驶等领域具有广泛的应用,能够有效地规划航行路径,减少能量消耗并提高效率。

2 Dubins曲线原理

2.1 坐标变换

如图所示,在全局坐标系 x O y xOy xOy中,设机器人起始位姿、终止位姿、最小转弯半径分别为 ( x s , y s , α ) \left( x_s,y_s,\alpha \right) (xs,ys,α) ( x g , y g , β ) \left( x_g,y_g,\beta \right) (xg,yg,β) R R R,则以 p s = ( x s , y s ) \boldsymbol{p}_s=\left( x_s,y_s \right) ps=(xs,ys)为新坐标系原点, p s \boldsymbol{p}_s ps指向 p g = ( x g , y g ) \boldsymbol{p}_g=\left( x_g,y_g \right) pg=(xg,yg)方向为 x ′ x' x轴,垂直方向为 y ′ y' y轴建立新坐标系 x ′ O ′ y ′ x'O'y' xOy

根据比例关系 d / D = r / R {{d}/{D}}={{r}/{R}} d/D=r/R,其中 D = ∥ p s − p g ∥ 2 D=\left\| \boldsymbol{p}_s-\boldsymbol{p}_g \right\| _2 D= pspg 2。为了便于后续推导,不妨归一化最小转弯半径,即令 r = 1 r=1 r=1。所以在坐标系 x ′ O ′ y ′ x'O'y' xOy中,通常取起点、终点间距为 d = D / R d={{D}/{R}} d=D/R,从而起始位姿、终止位姿、最小转弯半径分别转换为

s t a r t = [ 0 0 α − θ ] T , g o a l = [ d 0 β − θ ] T , r = 1 \mathrm{start}=\left[ \begin{matrix} 0& 0& \alpha -\theta\\\end{matrix} \right] ^T, \mathrm{goal}=\left[ \begin{matrix} d& 0& \beta -\theta\\\end{matrix} \right] ^T, r=1 start=[00αθ]T,goal=[d0βθ]T,r=1

其中 θ = a r c tan ⁡ ( ( y g − y s ) / ( x g − x s ) ) \theta =\mathrm{arc}\tan \left( {{\left( y_g-y_s \right)}/{\left( x_g-x_s \right)}} \right) θ=arctan((ygys)/(xgxs)),接下来的推导均基于转换坐标系 x ′ O ′ y ′ x'O'y' xOy

2.2 单步运动公式

对于直行运动,设沿直线行进距离为 l l l,则

[ x ∗ y ∗ ϕ ∗ ] T = [ x + l cos ⁡ ϕ y + l sin ⁡ ϕ ϕ ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+l\cos \phi& y+l\sin \phi& \phi\\\end{matrix} \right] ^T [xyϕ]T=[x+lcosϕy+lsinϕϕ]T

对于转弯运动,假设转向角为 ψ \psi ψ,则由弧长公式可得

l = ψ r = r = 1 ψ l=\psi r\xlongequal{r=1}\psi l=ψrr=1 ψ

因此设沿圆弧行进距离为 l l l,以左转为例,由几何关系易得

[ x ∗ y ∗ ϕ ∗ ] T = [ x + r sin ⁡ ( ϕ + ψ ) − r sin ⁡ ( ϕ ) y + r cos ⁡ ( ϕ + ψ ) + r cos ⁡ ( ϕ ) ϕ + ψ ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+r\sin \left( \phi +\psi \right) -r\sin \left( \phi \right)& y+r\cos \left( \phi +\psi \right) +r\cos \left( \phi \right)& \phi +\psi\\\end{matrix} \right] ^T [xyϕ]T=[x+rsin(ϕ+ψ)rsin(ϕ)y+rcos(ϕ+ψ)+rcos(ϕ)ϕ+ψ]T

代入 r = 1 r=1 r=1 ψ = l \psi=l ψ=l可得

[ x ∗ y ∗ ϕ ∗ ] T = [ x + sin ⁡ ( ϕ + l ) − sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ + l ) + cos ⁡ ( ϕ ) ϕ + l ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x+\sin \left( \phi +l \right) -\sin \left( \phi \right)& y+\cos \left( \phi +l \right) +\cos \left( \phi \right)& \phi +l\\\end{matrix} \right] ^T [xyϕ]T=[x+sin(ϕ+l)sin(ϕ)y+cos(ϕ+l)+cos(ϕ)ϕ+l]T

同理,对于右转而言,有

[ x ∗ y ∗ ϕ ∗ ] T = [ x − sin ⁡ ( ϕ − l ) + sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ + l ) − cos ⁡ ( ϕ ) ϕ − l ] T \left[ \begin{matrix} x^*& y^*& \phi ^*\\\end{matrix} \right] ^T=\left[ \begin{matrix} x-\sin \left( \phi -l \right) +\sin \left( \phi \right)& y+\cos \left( \phi +l \right) -\cos \left( \phi \right)& \phi -l\\\end{matrix} \right] ^T [xyϕ]T=[xsin(ϕl)+sin(ϕ)y+cos(ϕ+l)cos(ϕ)ϕl]T

综上所述,可得单步运动映射

{ L l + ( x , y , ϕ ) = [ x + sin ⁡ ( ϕ + l ) − sin ⁡ ( ϕ ) y − cos ⁡ ( ϕ + l ) + cos ⁡ ( ϕ ) ϕ + l ] T R l + ( x , y , ϕ ) = [ x − sin ⁡ ( ϕ − l ) + sin ⁡ ( ϕ ) y + cos ⁡ ( ϕ − l ) − cos ⁡ ( ϕ ) ϕ − l ] T S l + ( x , y , ϕ ) = [ x + l cos ⁡ ϕ y + l sin ⁡ ϕ ϕ ] T \begin{cases} L_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x+\sin \left( \phi +l \right) -\sin \left( \phi \right)& y-\cos \left( \phi +l \right) +\cos \left( \phi \right)& \phi +l\\\end{matrix} \right] ^T\\ R_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x-\sin \left( \phi -l \right) +\sin \left( \phi \right)& y+\cos \left( \phi -l \right) -\cos \left( \phi \right)& \phi -l\\\end{matrix} \right] ^T\\ S_{l}^{+}\left( x,y,\phi \right) =\left[ \begin{matrix} x+l\cos \phi& y+l\sin \phi& \phi\\\end{matrix} \right] ^T\\\end{cases} Ll+(x,y,ϕ)=[x+sin(ϕ+l)sin(ϕ)ycos(ϕ+l)+cos(ϕ)ϕ+l]TRl+(x,y,ϕ)=[xsin(ϕl)+sin(ϕ)y+cos(ϕl)cos(ϕ)ϕl]TSl+(x,y,ϕ)=[x+lcosϕy+lsinϕϕ]T

2.3 曲线模式

Dubins曲线假设物体只能向前,通过组合左转、右转、直行可得六种运动模式

{ L S L , R S R , R S L , L S R , R L R , L R L } \left\{ LSL, RSR, RSL, LSR, RLR, LRL \right\} {LSL,RSR,RSL,LSR,RLR,LRL}

可以总结这六种运动模式的解析解为


3 Dubins曲线生成算法

Dubins曲线路径生成算法流程如表所示

4 仿真实现

4.1 ROS C++实现

核心代码如下所示

Points2d Dubins::generation(Pose2d start, Pose2d goal)
{
  Points2d path;
  double sx, sy, syaw;
  double gx, gy, gyaw;
  std::tie(sx, sy, syaw) = start;
  std::tie(gx, gy, gyaw) = goal;

  // coordinate transformation
  gx -= sx;
  gy -= sy;
  double theta = helper::mod2pi(atan2(gy, gx));
  double dist = hypot(gx, gy) * max_curv_;
  double alpha = helper::mod2pi(syaw - theta);
  double beta = helper::mod2pi(gyaw - theta);

  // select the best motion
  DubinsMode best_mode;
  double best_cost = DUBINS_MAX;
  DubinsLength length;
  DubinsLength best_length = { DUBINS_NONE, DUBINS_NONE, DUBINS_NONE };
  DubinsMode mode;

  for (const auto solver : dubins_solvers)
  {
    (this->*solver)(alpha, beta, dist, length, mode);
    _update(length, mode, best_length, best_mode, best_cost);
  }

  if (best_cost == DUBINS_MAX)
    return path;

  // interpolation
  ...

  // coordinate transformation
  Eigen::AngleAxisd r_vec(theta, Eigen::Vector3d(0, 0, 1));
  Eigen::Matrix3d R = r_vec.toRotationMatrix();
  Eigen::MatrixXd P = Eigen::MatrixXd::Ones(3, path_x.size());

  for (size_t i = 0; i < path_x.size(); i++)
  {
    P(0, i) = path_x[i];
    P(1, i) = path_y[i];
  }
  P = R * P;

  for (size_t i = 0; i < path_x.size(); i++)
    path.push_back({ P(0, i) + sx, P(1, i) + sy });

  return path;
}

4.2 Python实现

核心代码如下所示

def generation(self, start_pose: tuple, goal_pose: tuple):
	sx, sy, syaw = start_pose
	gx, gy, gyaw = goal_pose
	
	# coordinate transformation
	gx, gy = gx - sx, gy - sy
	theta = self.mod2pi(math.atan2(gy, gx))
	dist = math.hypot(gx, gy) * self.max_curv
	alpha = self.mod2pi(syaw - theta)
	beta = self.mod2pi(gyaw - theta)
	
	# select the best motion
	planners = [self.LSL, self.RSR, self.LSR, self.RSL, self.RLR, self.LRL]
	best_t, best_p, best_q, best_mode, best_cost = None, None, None, None, float("inf")
	
	for planner in planners:
		t, p, q, mode = planner(alpha, beta, dist)
		if t is None:
			continue
		cost = (abs(t) + abs(p) + abs(q))
		if best_cost > cost:
			best_t, best_p, best_q, best_mode, best_cost = t, p, q, mode, cost
	
	# interpolation
	...
	
	# coordinate transformation
	rot = Rot.from_euler('z', theta).as_matrix()[0:2, 0:2]
	converted_xy = rot @ np.stack([x_list, y_list])
	x_list = converted_xy[0, :] + sx
	y_list = converted_xy[1, :] + sy
	yaw_list = [self.pi2pi(i_yaw + theta) for i_yaw in yaw_list]
	
	return best_cost, best_mode, x_list, y_list, yaw_list

4.3 Matlab实现

核心代码如下所示

function [x_list, y_list, yaw_list] = generation(start_pose, goal_pose, param)
    sx = start_pose(1); sy = start_pose(2); syaw = start_pose(3);
    gx = goal_pose(1); gy = goal_pose(2); gyaw = goal_pose(3);

    % coordinate transformation
    gx = gx - sx; gy = gy - sy;
    theta = mod2pi(atan2(gy, gx));
    dist = hypot(gx, gy) * param.max_curv;
    alpha = mod2pi(syaw - theta);
    beta = mod2pi(gyaw - theta);

    % select the best motion
    planners = ["LSL", "RSR", "LSR", "RSL", "RLR", "LRL"];
    best_cost = inf;
    best_segs = [];
    best_mode = [];

    for i=1:length(planners)
        planner = str2func(planners(i));
        [segs, mode] = planner(alpha, beta, dist);
        if isempty(segs)
            continue
        end
        cost = (abs(segs(1)) + abs(segs(2)) + abs(segs(3)));
        if best_cost > cost
            best_segs = segs;
            best_mode = mode;
            best_cost = cost;
        end
    end
            
    % interpolation
    ...

    % coordinate transformation
    rot = [cos(theta), -sin(theta); sin(theta), cos(theta)];
    converted_xy = rot * [x_list; y_list];
    x_list = converted_xy(1, :) + sx;
    y_list = converted_xy(2, :) + sy;
    for j=1:length(yaw_list)
        yaw_list(j) = pi2pi(yaw_list(j) + theta);
    end
end

完整工程代码请联系下方博主名片获取


🔥 更多精彩专栏


👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐