首页 > Python资料 博客日记
Python数据操作
2023-08-01 14:16:34Python资料围观216次
文章Python数据操作分享给大家,欢迎收藏Python资料网,专注分享技术知识
Python主要通过Pandas和Numpy这两个库来处理各种格式的数据。 我们已经在前面的章节中看到了这两个库的重要特征。 在本章中,我们将看到每个库中关于如何操作数据的一些基本示例。
Numpy中的数据操作
NumPy中定义的最重要的对象是名为ndarray
的N
维数组类型。 它描述了相同类型的项目的集合。 可以使用从零开始的索引来访问集合中的项目。 ndarray
类的一个实例可以通过本教程稍后介绍的不同阵列创建例程来构建。 基本的ndarray
是使用NumPy中的数组函数创建的,如下所示 -
numpy.array
以下是关于Numpy数据处理的一些示例。
示例1
# more than one dimensions
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
输出如下 -
[[1, 2]
[3, 4]]
示例2
# minimum dimensions
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)
输出如下 -
[[1, 2, 3, 4, 5]]
示例3
# dtype parameter
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
输出如下 -
[ 1.+0.j, 2.+0.j, 3.+0.j]
Pandas数据操作
Pandas 通过数列(Series),数据框和面板处理数据。 我们将看到一些例子。
Pandas数列
Series是一维标签数组,能够容纳任何类型的数据(整数,字符串,浮点数,python对象等)。 轴标签统称为索引。 Pandas系列可以使用以下构造函数创建 -
pandas.Series( data, index, dtype, copy)
示例
这里从Numpy Array创建一个系列。
#import the pandas library and aliasing as pd
import pandas as pd
import numpy as np
data = np.array(['a','b','c','d'])
s = pd.Series(data)
print (s)
它将输出如下结果 -
0 a
1 b
2 c
3 d
dtype: object
Pandas数据帧
数据帧(DataFrame)是一个二维数据结构,即数据按行和列的表格方式排列。 可以使用以下构造函数创建一个pandas DataFrame -
pandas.DataFrame( data, index, columns, dtype, copy)
现在使用数组来创建索引的DataFrame。
import pandas as pd
data = {'Name':['Tom', 'Jack', 'Steve', 'Ricky'],'Age':[28,34,29,42]}
df = pd.DataFrame(data, index=['rank1','rank2','rank3','rank4'])
print df
它将输出如下结果 -
Age Name
rank1 28 Tom
rank2 34 Jack
rank3 29 Steve
rank4 42 Ricky
Pandas面板
面板是数据的3D容器。 术语面板数据来自计量经济学,部分负责名称pandas - pan(el)-da(ta)-s。
面板可以使用以下构造函数创建 -
pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)
在下面的例子中,从DataFrame对象的字典创建一个面板 -
#creating an empty panel
import pandas as pd
import numpy as np
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print (p)
它将输出如下结果 -
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj