首页 > Python资料 博客日记
【python】六个常见爬虫案例【附源码】
2024-03-08 11:00:04Python资料围观168次
大家好,我是博主英杰,整理了几个常见的爬虫案例,分享给大家,适合小白学习
一、爬取豆瓣电影排行榜Top250存储到Excel文件
近年来,Python在数据爬取和处理方面的应用越来越广泛。本文将介绍一个基于Python的爬虫程序,用于抓取豆瓣电影Top250的相关信息,并将其保存为Excel文件。
获取网页数据的函数,包括以下步骤:
1. 循环10次,依次爬取不同页面的信息;
2. 使用`urllib`获取html页面;
3. 使用`BeautifulSoup`解析页面;
4. 遍历每个div标签,即每一部电影;
5. 对每个电影信息进行匹配,使用正则表达式提取需要的信息并保存到一个列表中;
6. 将每个电影信息的列表保存到总列表中。
效果展示:
源代码:
from bs4 import BeautifulSoup
import re #正则表达式,进行文字匹配
import urllib.request,urllib.error #指定URL,获取网页数据
import xlwt #进行excel操作
def main():
baseurl = "https://movie.douban.com/top250?start="
datalist= getdata(baseurl)
savepath = ".\\豆瓣电影top250.xls"
savedata(datalist,savepath)
#compile返回的是匹配到的模式对象
findLink = re.compile(r'<a href="(.*?)">') # 正则表达式模式的匹配,影片详情
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S) # re.S让换行符包含在字符中,图片信息
findTitle = re.compile(r'<span class="title">(.*)</span>') # 影片片名
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>') # 找到评分
findJudge = re.compile(r'<span>(\d*)人评价</span>') # 找到评价人数 #\d表示数字
findInq = re.compile(r'<span class="inq">(.*)</span>') # 找到概况
findBd = re.compile(r'<p class="">(.*?)</p>', re.S) # 找到影片的相关内容,如导演,演员等
##获取网页数据
def getdata(baseurl):
datalist=[]
for i in range(0,10):
url = baseurl+str(i*25) ##豆瓣页面上一共有十页信息,一页爬取完成后继续下一页
html = geturl(url)
soup = BeautifulSoup(html,"html.parser") #构建了一个BeautifulSoup类型的对象soup,是解析html的
for item in soup.find_all("div",class_='item'): ##find_all返回的是一个列表
data=[] #保存HTML中一部电影的所有信息
item = str(item) ##需要先转换为字符串findall才能进行搜索
link = re.findall(findLink,item)[0] ##findall返回的是列表,索引只将值赋值
data.append(link)
imgSrc = re.findall(findImgSrc, item)[0]
data.append(imgSrc)
titles=re.findall(findTitle,item) ##有的影片只有一个中文名,有的有中文和英文
if(len(titles)==2):
onetitle = titles[0]
data.append(onetitle)
twotitle = titles[1].replace("/","")#去掉无关的符号
data.append(twotitle)
else:
data.append(titles)
data.append(" ") ##将下一个值空出来
rating = re.findall(findRating, item)[0] # 添加评分
data.append(rating)
judgeNum = re.findall(findJudge, item)[0] # 添加评价人数
data.append(judgeNum)
inq = re.findall(findInq, item) # 添加概述
if len(inq) != 0:
inq = inq[0].replace("。", "")
data.append(inq)
else:
data.append(" ")
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)?', " ", bd)
bd = re.sub('/', " ", bd)
data.append(bd.strip()) # 去掉前后的空格
datalist.append(data)
return datalist
##保存数据
def savedata(datalist,savepath):
workbook = xlwt.Workbook(encoding="utf-8",style_compression=0) ##style_compression=0不压缩
worksheet = workbook.add_sheet("豆瓣电影top250",cell_overwrite_ok=True) #cell_overwrite_ok=True再次写入数据覆盖
column = ("电影详情链接", "图片链接", "影片中文名", "影片外国名", "评分", "评价数", "概况", "相关信息") ##execl项目栏
for i in range(0,8):
worksheet.write(0,i,column[i]) #将column[i]的内容保存在第0行,第i列
for i in range(0,250):
data = datalist[i]
for j in range(0,8):
worksheet.write(i+1,j,data[j])
workbook.save(savepath)
##爬取网页
def geturl(url):
head = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36"
}
req = urllib.request.Request(url,headers=head)
try: ##异常检测
response = urllib.request.urlopen(req)
html = response.read().decode("utf-8")
except urllib.error.URLError as e:
if hasattr(e,"code"): ##如果错误中有这个属性的话
print(e.code)
if hasattr(e,"reason"):
print(e.reason)
return html
if __name__ == '__main__':
main()
print("爬取成功!!!")
二、爬取百度热搜排行榜Top50+可视化
2.1 代码思路:
-
导入所需的库:
import requests
from bs4 import BeautifulSoup
import openpyxl
requests
库用于发送HTTP请求获取网页内容。
BeautifulSoup
库用于解析HTML页面的内容。
openpyxl
库用于创建和操作Excel文件。
2.发起HTTP请求获取百度热搜页面内容:
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content
这里使用了
requests.get()
方法发送GET请求,并将响应的内容赋值给变量html
。
3.使用BeautifulSoup解析页面内容:
soup = BeautifulSoup(html, 'html.parser')
创建一个
BeautifulSoup
对象,并传入要解析的HTML内容和解析器类型。
4.提取热搜数据:
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
hot_searches.append(item.text)
这段代码通过调用
soup.find_all()
方法找到所有<div>
标签,并且指定class
属性为'c-single-text-ellipsis'
的元素。然后,将每个元素的文本内容添加到
hot_searches
列表中。
5.保存热搜数据到Excel:
workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'
使用
openpyxl.Workbook()
创建一个新的工作簿对象。调用
active
属性获取当前活动的工作表对象,并将其赋值给变量sheet
。使用
title
属性给工作表命名为'Baidu Hot Searches'
。
6.设置标题:
sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:Yan-英杰')
使用
cell()
方法选择要操作的单元格,其中row
和column
参数分别表示行和列的索引。将标题字符串
'百度热搜排行榜—博主:Yan-英杰'
写入选定的单元格。
7.写入热搜数据:
for i in range(len(hot_searches)):
sheet.cell(row=i+2, column=1, value=hot_searches[i])
使用
range()
函数生成一个包含索引的范围,循环遍历hot_searches
列表。对于每个索引
i
,使用cell()
方法将对应的热搜词写入Excel文件中。
8.保存Excel文件:
workbook.save('百度热搜.xlsx')
使用
save()
方法将工作簿保存到指定的文件名'百度热搜.xlsx'
。
9.输出提示信息:
print('热搜数据已保存到 百度热搜.xlsx')
在控制台输出保存成功的提示信息。
效果展示:
源代码:
import requests
from bs4 import BeautifulSoup
import openpyxl
# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')
# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
hot_searches.append(item.text)
# 保存热搜数据到Excel
workbook = openpyxl.Workbook()
sheet = workbook.active
sheet.title = 'Baidu Hot Searches'
# 设置标题
sheet.cell(row=1, column=1, value='百度热搜排行榜—博主:Yan-英杰')
# 写入热搜数据
for i in range(len(hot_searches)):
sheet.cell(row=i+2, column=1, value=hot_searches[i])
workbook.save('百度热搜.xlsx')
print('热搜数据已保存到 百度热搜.xlsx')
可视化代码:
import requests
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
# 发起HTTP请求获取百度热搜页面内容
url = 'https://top.baidu.com/board?tab=realtime'
response = requests.get(url)
html = response.content
# 使用BeautifulSoup解析页面内容
soup = BeautifulSoup(html, 'html.parser')
# 提取热搜数据
hot_searches = []
for item in soup.find_all('div', {'class': 'c-single-text-ellipsis'}):
hot_searches.append(item.text)
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# 绘制条形图
plt.figure(figsize=(15, 10))
x = range(len(hot_searches))
y = list(reversed(range(1, len(hot_searches)+1)))
plt.barh(x, y, tick_label=hot_searches, height=0.8) # 调整条形图的高度
# 添加标题和标签
plt.title('百度热搜排行榜')
plt.xlabel('排名')
plt.ylabel('关键词')
# 调整坐标轴刻度
plt.xticks(range(1, len(hot_searches)+1))
# 调整条形图之间的间隔
plt.subplots_adjust(hspace=0.8, wspace=0.5)
# 显示图形
plt.tight_layout()
plt.show()
三、爬取斗鱼直播照片保存到本地目录
效果展示:
源代码:
#导入了必要的模块requests和os
import requests
import os
# 定义了一个函数get_html(url),
# 用于发送GET请求获取指定URL的响应数据。函数中设置了请求头部信息,
# 以模拟浏览器的请求。函数返回响应数据的JSON格式内容
def get_html(url):
header = {
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36'
}
response = requests.get(url=url, headers=header)
# print(response.json())
html = response.json()
return html
# 定义了一个函数parse_html(html),
# 用于解析响应数据中的图片信息。通过分析响应数据的结构,
# 提取出每个图片的URL和标题,并将其存储在一个字典中,然后将所有字典组成的列表返回
def parse_html(html):
rl_list = html['data']['rl']
# print(rl_list)
img_info_list = []
for rl in rl_list:
img_info = {}
img_info['img_url'] = rl['rs1']
img_info['title'] = rl['nn']
# print(img_url)
# exit()
img_info_list.append(img_info)
# print(img_info_list)
return img_info_list
# 定义了一个函数save_to_images(img_info_list),用于保存图片到本地。
# 首先创建一个目录"directory",如果目录不存在的话。然后遍历图片信息列表,
# 依次下载每个图片并保存到目录中,图片的文件名为标题加上".jpg"后缀。
def save_to_images(img_info_list):
dir_path = 'directory'
if not os.path.exists(dir_path):
os.makedirs(dir_path)
for img_info in img_info_list:
img_path = os.path.join(dir_path, img_info['title'] + '.jpg')
res = requests.get(img_info['img_url'])
res_img = res.content
with open(img_path, 'wb') as f:
f.write(res_img)
# exit()
#在主程序中,设置了要爬取的URL,并调用前面定义的函数来执行爬取、解析和保存操作。
if __name__ == '__main__':
url = 'https://www.douyu.com/gapi/rknc/directory/yzRec/1'
html = get_html(url)
img_info_list = parse_html(html)
save_to_images(img_info_list)
四、爬取酷狗音乐Top500排行榜
从酷狗音乐排行榜中提取歌曲的排名、歌名、歌手和时长等信息
代码思路:
效果展示:
源码:
import requests # 发送网络请求,获取 HTML 等信息
from bs4 import BeautifulSoup # 解析 HTML 信息,提取需要的信息
import time # 控制爬虫速度,防止过快被封IP
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/97.0.4692.71 Safari/537.36"
# 添加浏览器头部信息,模拟请求
}
def get_info(url):
# 参数 url :要爬取的网页地址
web_data = requests.get(url, headers=headers) # 发送网络请求,获取 HTML 等信息
soup = BeautifulSoup(web_data.text, 'lxml') # 解析 HTML 信息,提取需要的信息
# 通过 CSS 选择器定位到需要的信息
ranks = soup.select('span.pc_temp_num')
titles = soup.select('div.pc_temp_songlist > ul > li > a')
times = soup.select('span.pc_temp_tips_r > span')
# for 循环遍历每个信息,并将其存储到字典中
for rank, title, time in zip(ranks, titles, times):
data = {
"rank": rank.get_text().strip(), # 歌曲排名
"singer": title.get_text().replace("\n", "").replace("\t", "").split('-')[1], # 歌手名
"song": title.get_text().replace("\n", "").replace("\t", "").split('-')[0], # 歌曲名
"time": time.get_text().strip() # 歌曲时长
}
print(data) # 打印获取到的信息
if __name__ == '__main__':
urls = ["https://www.kugou.com/yy/rank/home/{}-8888.html".format(str(i)) for i in range(1, 24)]
# 构造要爬取的页面地址列表
for url in urls:
get_info(url) # 调用函数,获取页面信息
time.sleep(1) # 控制爬虫速度,防止过快被封IP
五、爬取链家二手房数据做数据分析
在数据分析和挖掘领域中,网络爬虫是一种常见的工具,用于从网页上收集数据。介绍如何使用 Python 编写简单的网络爬虫程序,从链家网上海二手房页面获取房屋信息,并将数据保存到 Excel 文件中。
效果图:
代码思路:
首先,我们定义了一个函数 fetch_data(page_number),用于获取指定页面的房屋信息数据。这个函数会构建对应页数的 URL,并发送 GET 请求获取页面内容。然后,使用 BeautifulSoup 解析页面内容,并提取每个房屋信息的相关数据,如区域、房型、关注人数、单价和总价。最终将提取的数据以字典形式存储在列表中,并返回该列表。
接下来,我们定义了主函数 main(),该函数控制整个爬取和保存数据的流程。在主函数中,我们循环爬取前 10 页的数据,调用 fetch_data(page_number) 函数获取每一页的数据,并将数据追加到列表中。然后,将所有爬取的数据存储在 DataFrame 中,并使用 df.to_excel('lianjia_data.xlsx', index=False) 将数据保存到 Excel 文件中。
最后,在程序的入口处,通过 if __name__ == "__main__": 来执行主函数 main()。
源代码:
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 收集单页数据 xpanx.com
def fetch_data(page_number):
url = f"https://sh.lianjia.com/ershoufang/pg{page_number}/"
response = requests.get(url)
if response.status_code != 200:
print("请求失败")
return []
soup = BeautifulSoup(response.text, 'html.parser')
rows = []
for house_info in soup.find_all("li", {"class": "clear LOGVIEWDATA LOGCLICKDATA"}):
row = {}
# 使用您提供的类名来获取数据 xpanx.com
row['区域'] = house_info.find("div", {"class": "positionInfo"}).get_text() if house_info.find("div", {
"class": "positionInfo"}) else None
row['房型'] = house_info.find("div", {"class": "houseInfo"}).get_text() if house_info.find("div", {
"class": "houseInfo"}) else None
row['关注'] = house_info.find("div", {"class": "followInfo"}).get_text() if house_info.find("div", {
"class": "followInfo"}) else None
row['单价'] = house_info.find("div", {"class": "unitPrice"}).get_text() if house_info.find("div", {
"class": "unitPrice"}) else None
row['总价'] = house_info.find("div", {"class": "priceInfo"}).get_text() if house_info.find("div", {
"class": "priceInfo"}) else None
rows.append(row)
return rows
# 主函数
def main():
all_data = []
for i in range(1, 11): # 爬取前10页数据作为示例
print(f"正在爬取第{i}页...")
all_data += fetch_data(i)
# 保存数据到Excel xpanx.com
df = pd.DataFrame(all_data)
df.to_excel('lianjia_data.xlsx', index=False)
print("数据已保存到 'lianjia_data.xlsx'")
if __name__ == "__main__":
main()
六、爬取豆瓣电影排行榜TOP250存储到CSV文件中
代码思路:
首先,我们导入了需要用到的三个Python模块:requests、lxml和csv。
然后,我们定义了豆瓣电影TOP250页面的URL地址,并使用getSource(url)函数获取网页源码。
接着,我们定义了一个getEveryItem(source)函数,它使用XPath表达式从HTML源码中提取出每部电影的标题、URL、评分和引言,并将这些信息存储到一个字典中,最后将所有电影的字典存储到一个列表中并返回。
然后,我们定义了一个writeData(movieList)函数,它使用csv库的DictWriter类创建一个CSV写入对象,然后将电影信息列表逐行写入CSV文件。
最后,在if __name__ == '__main__'语句块中,我们定义了一个空的电影信息列表movieList,然后循环遍历前10页豆瓣电影TOP250页面,分别抓取每一页的网页源码,并使用getEveryItem()函数解析出电影信息并存储到movieList中,最后使用writeData()函数将电影信息写入CSV文件。
效果图:
源代码:
私信博主进入交流群,一起学习探讨,如果对CSDN周边以及有偿返现活动感兴趣:
可添加博主:Yan--yingjie
如果想免费获取图书,也可添加博主微信,每周免费送数十本
#代码首先导入了需要使用的模块:requests、lxml和csv。
import requests
from lxml import etree
import csv
#
doubanUrl = 'https://movie.douban.com/top250?start={}&filter='
# 然后定义了豆瓣电影TOP250页面的URL地址,并实现了一个函数getSource(url)来获取网页的源码。该函数发送HTTP请求,添加了请求头信息以防止被网站识别为爬虫,并通过requests.get()方法获取网页源码。
def getSource(url):
# 反爬 填写headers请求头
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.88 Safari/537.36'
}
response = requests.get(url, headers=headers)
# 防止出现乱码
response.encoding = 'utf-8'
# print(response.text)
return response.text
# 定义了一个函数getEveryItem(source)来解析每个电影的信息。首先,使用lxml库的etree模块将源码转换为HTML元素对象。然后,使用XPath表达式定位到包含电影信息的每个HTML元素。通过对每个元素进行XPath查询,提取出电影的标题、副标题、URL、评分和引言等信息。最后,将这些信息存储在一个字典中,并将所有电影的字典存储在一个列表中。
def getEveryItem(source):
html_element = etree.HTML(source)
movieItemList = html_element.xpath('//div[@class="info"]')
# 定义一个空的列表
movieList = []
for eachMoive in movieItemList:
# 创建一个字典 像列表中存储数据[{电影一},{电影二}......]
movieDict = {}
title = eachMoive.xpath('div[@class="hd"]/a/span[@class="title"]/text()') # 标题
otherTitle = eachMoive.xpath('div[@class="hd"]/a/span[@class="other"]/text()') # 副标题
link = eachMoive.xpath('div[@class="hd"]/a/@href')[0] # url
star = eachMoive.xpath('div[@class="bd"]/div[@class="star"]/span[@class="rating_num"]/text()')[0] # 评分
quote = eachMoive.xpath('div[@class="bd"]/p[@class="quote"]/span/text()') # 引言(名句)
if quote:
quote = quote[0]
else:
quote = ''
# 保存数据
movieDict['title'] = ''.join(title + otherTitle)
movieDict['url'] = link
movieDict['star'] = star
movieDict['quote'] = quote
movieList.append(movieDict)
print(movieList)
return movieList
# 保存数据
def writeData(movieList):
with open('douban.csv', 'w', encoding='utf-8', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['title', 'star', 'quote', 'url'])
writer.writeheader() # 写入表头
for each in movieList:
writer.writerow(each)
if __name__ == '__main__':
movieList = []
# 一共有10页
for i in range(10):
pageLink = doubanUrl.format(i * 25)
source = getSource(pageLink)
movieList += getEveryItem(source)
writeData(movieList)
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程