首页 > Python资料 博客日记
完整且详细的Yolov8复现+训练自己的数据集
2024-03-09 16:00:04Python资料围观587次
yolov8做了更简单的部署,可以用于检测,分类,分割等,速度更快,精度更高。具体yolov8的复现可以参考:
一、代码,权重的下载
1. 打开上面的源代码地址,下载源代码压缩包。
2.下载后解压。
3.权重的下载 :建议点击上面的链接直接下载,后面的predict.py虽然设置了自动下载,但是往往因为网络或者环境配置的问题cut掉。因为作者复现的是检测任务,权重放在detect文件下。
二、配置环境
1.建议每次做新项目都重建一个新环境,避免了各种包的版本的冲突,同时也为了避免在新项目跑通后旧项目又要重新配置环境的麻烦,所以重建环境是不错的选择。
1.打开Anaconda Prompt(如果没有Anaconda,建议下载一个,在配置环境的方面还是很方便的,具体的下载方式参考:(54条消息) 史上最全最详细的Anaconda安装教程_OSurer的博客-CSDN博客https://blog.csdn.net/wq_ocean_/article/details/103889237?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522168653306416782427441050%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=168653306416782427441050&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~top_positive~default-1-103889237-null-null.142%5Ev88%5Econtrol,239%5Ev2%5Einsert_chatgpt&utm_term=anaconda%E5%AE%89%E8%A3%85%E6%95%99%E7%A8%8B&spm=1018.2226.3001.4187)
2.具体操作:
(1) 创建环境
conda create -n yolov8 python==3.7
(官方要求>=3.7,所以python3.8也完全可以)
(2)激活环境
conda activate yolov8
(3)下载Pytorch,这个步骤也十分重要!根据自己电脑配置下载。官方要求Pytorch>=1.7。
首先查看自己的显卡配置:win+R ,输入nvidia-smi
去官网下载对应或者不大于箭头指出的版本,官网地址:PyTorchhttps://pytorch.org/
pip下载会比conda下载略快。
(4)配置好环境后,使用pycharm打开源代码工程文件
(5)选择下载的yolov8环境。
选择python.exe文件。
(6)配置yolov8要求的包,点击Temina,输入代码:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
-i https://pypi.tuna.tsinghua.edu.cn/simple/这是一次性换源代码,要关掉梯子才能链接。
三、验证一下代码是否可以预测例子
1.打开predict.py
2.直接运行,结果会保存在runs里。
3.可能碰见的错误是关于torchvision版本的问题,重新安装即可。
四、制作自己的数据集
先介绍YoLov 8 最终所需要的数据集格式:
datasets
|-images
|--train
|--val
|--test
|-labels
|--train
|--val
|--test
1.Yolo要求的数据标签为.txt
2.与Yolov7 和v5 一样,可以使用labelme标注数据集,yolov8支持多种数据集格式,我是采用上面的格式跑通了,具体制作的过程可参考:
(1)修改模型配置文件
选择yolov8.yaml,修改nc为自己数据集所需检测类别的个数
(2)修改数据加载配置文件,建议全部使用绝对路径
train: "D:/ultralytics-main/datasets/belt/train.txt"
val: "D:/ultralytics-main/datasets/belt/train.txt"
nc: 1
names: ["1"]
至此,所有的配置已经完成。
五、训练自己的数据集
(1)yolo提供自己的指令模式,在调参方面十分方便,当然不下载也可以,直接在文件修改和运行也无碍。
在Terminal下直接运行:
pip install ultralytics
(2)训练:
yolo train data=你的配置文件(xx.yaml)的绝对路径 model=yolov8s.pt epochs=300 imgsz=640 batch=8 workers=0 device=0
如果想使用多卡训练,device='\0,1,2,xxx\'
(3)训练过程首先会显示你所使用的训练的硬件设备信息,然后下一段话则是你的参数配置,紧接着是backbone信息,最后是加载信息,并告知你训练的结果会保存在runs\detect\trainxx。
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj