首页 > Python资料 博客日记
【Python/绘图】python绘图
2024-03-13 19:00:05Python资料围观125次
这篇文章介绍了【Python/绘图】python绘图,分享给大家做个参考,收藏Python资料网收获更多编程知识
一、二维图
1、柱形图
1.1、基础柱形图
import matplotlib.pyplot as plt
import numpy as np
# 模拟一些数据
np.random.seed(3)
x1 = 0.5 + np.arange(8)
y1 = np.random.uniform(2, 15, len(x1))
x2 = np.arange(10)
y2 = x2 ** 2
x3 = np.linspace(1,10,15)
y3 = x3 ** 2 + 2 * x3 - 2
# 获得图和坐标轴,图长宽比是8:5,图有1行3列,图中有3个坐标轴,这三个坐标轴共享y轴
fig, ax = plt.subplots(1, 3, figsize=(8,5), sharey=True)
# 为坐标轴设置边界和刻度
ax[0].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
ax[1].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
ax[2].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
# 在坐标轴上画出三个柱形图
ax[0].bar(x1, y1, width=1, edgecolor="red", linewidth=0.7)
ax[1].bar(x2, y2, width=0.7, edgecolor="green", linewidth=1.4)
ax[2].bar(x3, y3, width=0.4, edgecolor="white", linewidth=2.1)
plt.show()
效果:
1.2、设置颜色、图例、图的标题
import matplotlib.pyplot as plt
import numpy as np
# 模拟一些数据
np.random.seed(3)
x1 = 0.5 + np.arange(8)
y1 = np.random.uniform(2, 15, len(x1))
x2 = np.arange(10)
y2 = x2 ** 2
x3 = np.linspace(1, 10, 15)
y3 = x3 ** 2 + 2 * x3 - 2
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots(1, 3, figsize=(8, 5), sharey=True)
ax[0].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
ax[1].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
ax[2].set(xlim=(0, 10), ylim=(0, 100), xticks=np.arange(1, 11, 2), yticks=np.arange(1, 200, 10))
ax[0].bar(x1, y1, width=1, edgecolor="red", linewidth=0.7)
ax[2].bar(x3, y3, width=0.4, edgecolor="white", linewidth=2.1)
# 为第二个柱形图添加颜色和标签。为每个x设置标签和颜色,有多少个x值,列表中就要有多少个元素。画完之后得到画的内容
container = ax[1].bar(x2[y2 < 20], y2[y2 < 20], width=0.7, edgecolor="green", linewidth=1.4, color="red",
label="小于20")
ax[1].bar(x2[np.logical_and(y2 >= 20, y2 < 50)], y2[np.logical_and(y2 >= 20, y2 < 50)], width=0.7, edgecolor="green",
linewidth=1.4, color="green", label="介于20到50")
ax[1].bar(x2[y2 > 50], y2[y2 > 50], width=0.7, edgecolor="green", linewidth=1.4, color="blue", label="大于50")
# 在画的内容中显示y标签
ax[1].bar_label(container=container, label_type="edge")
# 有了标签之后,就可以显示图例
ax[1].legend(title="")
# 图2的标题
ax[1].set_title("图2")
# 图3的标题
ax[2].set_title("图3")
plt.show()
坐标轴对象可以设置要画的内容的标签,画完后可以返回一个绘制内容对象,绘制内容对象可以画出y标签的值。
效果如下:
可以在坐标轴画图的时候指定误差棒。
import numpy as np
import matplotlib.pyplot as plt
# Fixing random state for reproducibility
np.random.seed(19680801)
# Example data
people = ('Tom', 'Dick', 'Harry', 'Slim', 'Jim')
y_pos = np.arange(len(people))
performance = 3 + 10 * np.random.rand(len(people))
error = np.ones(len(people))
fig, ax = plt.subplots()
# xerr是x轴方向的误差棒
hbars = ax.barh(y_pos, performance, xerr=error, align='center')
ax.set_yticks(y_pos, labels=people)
# ax.invert_yaxis() # labels read top-to-bottom
ax.set_xlabel('Performance')
ax.set_title('How fast do you want to go today?')
# Label with specially formatted floats
ax.bar_label(hbars, fmt='%.2f')
ax.set_xlim(right=15) # adjust xlim to fit labels
plt.show()
这里是将误差棒做成标签指示条了
1.3、柱状堆积图
import matplotlib.pyplot as plt
import numpy as np
# 模拟一些数据
x = ['文物{}'.format(i) for i in range(10)]
y1 = np.arange(1,11)
y2 = np.arange(11,21)
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots(1,1)
container1=ax.bar(x,y1,color="red",label="数据集1",width=0.6,edgecolor="black")
# 关键在于画第二个内容时,要指定画的内容的底部是哪里。这里指定了第二个内容的底部是第一个内容的顶部
container2=ax.bar(x,y2,color="yellow",label="数据集2",bottom=y1,width=0.6,edgecolor="black")
ax.bar_label(container1,label_type="center")
ax.bar_label(container2,label_type="center")
ax.legend()
plt.show()
效果如下:
1.4、分组柱状图
最好首先确定每一组的x值、y值、在图中的位置、颜色、组别标签。后面比较好改。下面的代码只设定了x值、y值、颜色、组别标签,位置没有首先设置,是边循环边确定的。
import numpy as np
import matplotlib.pyplot as plt
gruop_label = ['第一组','第二组','第三组']
gruop_color = ['red','green','yellow']
x = np.arange(1,7,2)
y1 = np.arange(1,7,2)
y2 = np.arange(3,9,2)
y3 = np.arange(5,11,2)
y_list = [y1,y2,y3]
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots(1,1)
#画三次,每次都在x轴上偏斜一定距离画
width = 0.5
for index in range(len(y_list)):
bar = ax.bar(x+index*width,y_list[index],edgecolor="black",label=gruop_label[index],width=width,color=gruop_color[index])
ax.bar_label(bar,label_type="edge")
ax.legend()
plt.show()
效果如下:
会发现x轴的刻度错了。要把x轴的刻度设置成组别的标签,然后标签需要居中。
import numpy as np
import matplotlib.pyplot as plt
gruop_label = ['第一组','第二组','第三组']
gruop_color = ['red','green','yellow']
x = np.arange(1,7,2)
y1 = np.arange(1,7,2)
y2 = np.arange(3,9,2)
y3 = np.arange(5,11,2)
y_list = [y1,y2,y3]
# 用来正常显示中文标签
plt.rcParams['font.sans-serif'] = ['SimHei']
# 用来正常显示负号
plt.rcParams['axes.unicode_minus'] = False
fig, ax = plt.subplots(1,1)
#画三次,每次都在x轴上偏斜一定距离画
width = 0.5
for index in range(len(y_list)):
bar = ax.bar(x+index*width,y_list[index],edgecolor="black",label=gruop_label[index],width=width,color=gruop_color[index])
ax.bar_label(bar,label_type="edge")
ax.legend()
ax.set_xticks(x+1*width,gruop_label)
可以了。
二、三维图
1、三维散点图
import numpy as np
import matplotlib.pyplot as plt
# 准备一些1000个点,这些点分布在一个平面上
x = np.random.normal(0,1,1000)
y = np.linspace(0,1,1000)
z = 4 * x + 5 * y + 1
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.scatter3D(x,y,z,color='blue')
plt.show()
2、三维线框图
import numpy as np
import matplotlib.pyplot as plt
# 准备一些20个点,这些点分布在一个平面上(这些点要顺序生成,不能随机了)
x = np.linspace(-3,3,20)
y = np.linspace(-3,3,20)
# 把两个维度的数据形成网格
x, y =np.meshgrid(x,y)
# 利用网格得到z的数据(最好不要用到矩阵乘法……尽量使用标量*矩阵的形式吧)
z = 4 * x + 5 * y + 1
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot_wireframe(x,y,z,color='blue')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
# 准备一些20个点,这些点分布在一个平面上(这些点要顺序生成,不能随机了)
x = np.linspace(-3,3,20)
y = np.linspace(-3,3,20)
# 把两个维度的数据形成网格
x, y =np.meshgrid(x,y)
# 利用网格得到z的数据(最好不要用到矩阵乘法……尽量使用标量*矩阵的形式吧)
z = 4 * (x ** 2) + 5 * (y ** 3) + 1
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot_wireframe(x,y,z,color='blue')
plt.show()
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Python与PyTorch的版本对应
- Anaconda版本和Python版本对应关系(持续更新...)
- Python pyinstaller打包exe最完整教程
- Could not build wheels for llama-cpp-python, which is required to install pyproject.toml-based proj