首页 > Python资料 博客日记

【Python】进阶学习:pandas--describe()函数的使用介绍

2024-03-12 17:00:05Python资料围观321

本篇文章分享【Python】进阶学习:pandas--describe()函数的使用介绍,对你有帮助的话记得收藏一下,看Python资料网收获更多编程知识

🐍【Python】进阶学习:pandas——describe()函数的使用介绍

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化Python基础【高质量合集】PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


📊 一、初识describe()函数

  在数据分析和处理的过程中,我们经常需要了解数据的基本统计信息,如均值、标准差、最小值、最大值等。pandas库中的describe()函数为我们提供了这样的功能,它可以快速生成数据集的描述性统计信息。

📈 二、describe()函数的基本用法

  describe()函数是pandas库中DataFrame和Series对象的一个方法,它默认返回以下统计信息:

  • count:非空值的数量
  • mean:平均值
  • std:标准差
  • min:最小值
  • 25%:第一四分位数(Q1)
  • 50%:第二四分位数(中位数,Q2)
  • 75%:第三四分位数(Q3)
  • max:最大值

使用示例:

import pandas as pd

# 创建一个简单的DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 4, 3, 2, 1],
    'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)

# 使用describe()函数
description = df.describe()
print(description)

输出:

              A         B          C
count  5.000000  5.000000   5.000000
mean   3.000000  3.000000  30.000000
std    1.581139  1.581139  15.811388
min    1.000000  1.000000  10.000000
25%    2.000000  2.000000  20.000000
50%    3.000000  3.000000  30.000000
75%    4.000000  4.000000  40.000000
max    5.000000  5.000000  50.000000

🔍 三、定制describe()函数的输出

  describe()函数提供了多个参数,允许我们定制输出的统计信息。

  • percentiles:指定要包括的其他百分位数,例如percentiles=[.25, .5, .75]将返回第一、第二和第三四分位数。
  • include:指定要包括的数据类型,默认为'all',可以设置为'all', 'nums', 或 'object'
  • exclude:指定要排除的数据类型。

使用示例:

import pandas as pd

# 创建一个简单的DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 4, 3, 2, 1],
    'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)

# 使用describe()函数定制输出
custom_description = df.describe(percentiles=[.30, .60, .90])
print(custom_description)

输出:

              A         B          C
count  5.000000  5.000000   5.000000
mean   3.000000  3.000000  30.000000
std    1.581139  1.581139  15.811388
min    1.000000  1.000000  10.000000
30%    2.200000  2.200000  22.000000
50%    3.000000  3.000000  30.000000
60%    3.400000  3.400000  34.000000
90%    4.600000  4.600000  46.000000
max    5.000000  5.000000  50.000000

📊 四、describe()函数与数据可视化

  describe()函数输出的统计信息经常与数据可视化结合使用,以更直观地了解数据的分布。例如,我们可以使用matplotlib库来绘制箱线图(boxplot)。

使用示例:

import pandas as pd
from matplotlib import pyplot as plt

# 创建一个简单的DataFrame
data = {
    'A': [1, 2, 3, 4, 5],
    'B': [5, 4, 3, 2, 1],
    'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)

# 使用describe()函数定制输出
custom_description = df.describe(percentiles=[.30, .60, .90])
print(custom_description)

# 绘制箱线图
df.boxplot()
plt.show()

效果展示:

💡 五、深入理解统计指标

  了解describe()函数输出的统计指标对于正确解读数据至关重要。例如,标准差可以告诉我们数据集的离散程度,中位数则可以告诉我们数据集的中心趋势,而不受极端值的影响。

📚 六、总结与进阶学习

  describe()函数是pandas库中非常实用的一个函数,它可以帮助我们快速了解数据集的基本统计信息。通过定制输出、结合数据可视化以及深入理解统计指标,我们可以更好地分析和处理数据。在进阶学习中,你还可以探索其他与describe()函数相关的统计方法和可视化工具,以提高你的数据处理和分析能力。

希望这篇博客能帮助你更好地理解和使用pandas中的describe()函数!🚀📈🔍

🤝 七、期待与你共同进步

  🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏

  🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟

  📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬

  💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉

  🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉


版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!

标签:

相关文章

本站推荐