首页 > Python资料 博客日记
【Python】进阶学习:pandas--describe()函数的使用介绍
2024-03-12 17:00:05Python资料围观393次
🐍【Python】进阶学习:pandas——describe()
函数的使用介绍
🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)
🌵文章目录🌵
📊 一、初识describe()
函数
在数据分析和处理的过程中,我们经常需要了解数据的基本统计信息,如均值、标准差、最小值、最大值等。pandas库中的describe()
函数为我们提供了这样的功能,它可以快速生成数据集的描述性统计信息。
📈 二、describe()
函数的基本用法
describe()
函数是pandas库中DataFrame和Series对象的一个方法,它默认返回以下统计信息:
count
:非空值的数量mean
:平均值std
:标准差min
:最小值25%
:第一四分位数(Q1)50%
:第二四分位数(中位数,Q2)75%
:第三四分位数(Q3)max
:最大值
使用示例:
import pandas as pd
# 创建一个简单的DataFrame
data = {
'A': [1, 2, 3, 4, 5],
'B': [5, 4, 3, 2, 1],
'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)
# 使用describe()函数
description = df.describe()
print(description)
输出:
A B C
count 5.000000 5.000000 5.000000
mean 3.000000 3.000000 30.000000
std 1.581139 1.581139 15.811388
min 1.000000 1.000000 10.000000
25% 2.000000 2.000000 20.000000
50% 3.000000 3.000000 30.000000
75% 4.000000 4.000000 40.000000
max 5.000000 5.000000 50.000000
🔍 三、定制describe()
函数的输出
describe()
函数提供了多个参数,允许我们定制输出的统计信息。
percentiles
:指定要包括的其他百分位数,例如percentiles=[.25, .5, .75]
将返回第一、第二和第三四分位数。include
:指定要包括的数据类型,默认为'all'
,可以设置为'all'
,'nums'
, 或'object'
。exclude
:指定要排除的数据类型。
使用示例:
import pandas as pd
# 创建一个简单的DataFrame
data = {
'A': [1, 2, 3, 4, 5],
'B': [5, 4, 3, 2, 1],
'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)
# 使用describe()函数定制输出
custom_description = df.describe(percentiles=[.30, .60, .90])
print(custom_description)
输出:
A B C
count 5.000000 5.000000 5.000000
mean 3.000000 3.000000 30.000000
std 1.581139 1.581139 15.811388
min 1.000000 1.000000 10.000000
30% 2.200000 2.200000 22.000000
50% 3.000000 3.000000 30.000000
60% 3.400000 3.400000 34.000000
90% 4.600000 4.600000 46.000000
max 5.000000 5.000000 50.000000
📊 四、describe()
函数与数据可视化
describe()
函数输出的统计信息经常与数据可视化结合使用,以更直观地了解数据的分布。例如,我们可以使用matplotlib库来绘制箱线图(boxplot)。
使用示例:
import pandas as pd
from matplotlib import pyplot as plt
# 创建一个简单的DataFrame
data = {
'A': [1, 2, 3, 4, 5],
'B': [5, 4, 3, 2, 1],
'C': [10, 20, 30, 40, 50]
}
df = pd.DataFrame(data)
# 使用describe()函数定制输出
custom_description = df.describe(percentiles=[.30, .60, .90])
print(custom_description)
# 绘制箱线图
df.boxplot()
plt.show()
效果展示:
💡 五、深入理解统计指标
了解describe()
函数输出的统计指标对于正确解读数据至关重要。例如,标准差可以告诉我们数据集的离散程度,中位数则可以告诉我们数据集的中心趋势,而不受极端值的影响。
📚 六、总结与进阶学习
describe()
函数是pandas库中非常实用的一个函数,它可以帮助我们快速了解数据集的基本统计信息。通过定制输出、结合数据可视化以及深入理解统计指标,我们可以更好地分析和处理数据。在进阶学习中,你还可以探索其他与describe()
函数相关的统计方法和可视化工具,以提高你的数据处理和分析能力。
希望这篇博客能帮助你更好地理解和使用pandas中的describe()
函数!🚀📈🔍
🤝 七、期待与你共同进步
🌱 亲爱的读者,非常感谢你每一次的停留和阅读!你的支持是我们前行的最大动力!🙏
🌐 在这茫茫网海中,有你的关注,我们深感荣幸。你的每一次点赞👍、收藏🌟、评论💬和关注💖,都像是明灯一样照亮我们前行的道路,给予我们无比的鼓舞和力量。🌟
📚 我们会继续努力,为你呈现更多精彩和有深度的内容。同时,我们非常欢迎你在评论区留下你的宝贵意见和建议,让我们共同进步,共同成长!💬
💪 无论你在编程的道路上遇到什么困难,都希望你能坚持下去,因为每一次的挫折都是通往成功的必经之路。我们期待与你一起书写编程的精彩篇章! 🎉
🌈 最后,再次感谢你的厚爱与支持!愿你在编程的道路上越走越远,收获满满的成就和喜悦!祝你编程愉快!🎉
标签:
相关文章
最新发布
- 光流法结合深度学习神经网络的原理及应用(完整代码都有Python opencv)
- Python 图像处理进阶:特征提取与图像分类
- 大数据可视化分析-基于python的电影数据分析及可视化系统_9532dr50
- 【Python】入门(运算、输出、数据类型)
- 【Python】第一弹---解锁编程新世界:深入理解计算机基础与Python入门指南
- 华为OD机试E卷 --第k个排列 --24年OD统一考试(Java & JS & Python & C & C++)
- Python已安装包在import时报错未找到的解决方法
- 【Python】自动化神器PyAutoGUI —告别手动操作,一键模拟鼠标键盘,玩转微信及各种软件自动化
- Pycharm连接SQL Sever(详细教程)
- Python编程练习题及解析(49题)
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程