首页 > Python资料 博客日记
基于YOLO8的目标检测系统:开启智能视觉识别之旅
2024-07-30 01:00:10Python资料围观170次
Python资料网推荐基于YOLO8的目标检测系统:开启智能视觉识别之旅这篇文章给大家,欢迎收藏Python资料网享受知识的乐趣
文章目录
在线体验
- 基于
opencv
的摄像头实时目标检测
快速开始
- 创建
anaconda
环境
conda create -n XXX python=3.10
- pytorch安装
# 查看cuda版本(示例为:11.8)
nvcc -V
# 安装对应版本的pytorch
# 官网:https://pytorch.org/
# pip安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# conda安装,建议配置conda国内镜像源
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
- 其他依赖包安装
pip install -r ./requirements-target-dec.txt
- 网页界面如下,可在示例图片中快速进行试验
一、项目介绍篇
在人工智能和机器学习的浪潮中,YOLO8作为目标检测领域的一颗新星,以其卓越的性能和灵活性,受到了广泛关注。本项目基于YOLO8算法,构建了一个高效、易用的目标检测系统,旨在为用户提供一个强大的本地部署解决方案。通过精心设计的界面和丰富的功能,用户可以轻松实现目标检测任务,无论是在网页端还是本地计算机上。
1.1 YOLO8
- YOLO8是新一代的目标检测算法,由YOLO(You Only Look Once)系列发展而来。它继承了YOLO算法快速、高效的特点,并在此基础上进行了改进和优化,以适应更复杂的目标检测任务。YOLO8通过引入新的网络结构和训练策略,提高了检测的准确性和鲁棒性,尤其是在小目标和遮挡目标的检测上表现出色。
- YOLO8算法的关键创新包括:
- 改进的网络结构:YOLO8采用了更深层次的卷积神经网络,增强了特征提取的能力,使得模型能够更准确地识别和定位目标。
- 优化的锚框机制:通过优化锚框的设计,YOLO8能够更好地适应不同形状和大小的目标,减少了误检和漏检的情况。
- 增强的数据增强技术:YOLO8使用了更先进的数据增强方法,提高了模型对不同环境和条件的泛化能力。
- 高效的训练策略:YOLO8引入了新的损失函数和训练技巧,加快了模型的收敛速度,同时保持了检测性能。
- YOLO8的这些改进使得它在实时性要求高的应用场景中,如视频监控、自动驾驶等领域,具有广泛的应用前景。尽管YOLO8的具体细节和性能指标尚未完全公开,但其在目标检测领域的潜力已经引起了业界的广泛关注。
1.2 ultralytics
- Ultraalytics是一家专注于计算机视觉和人工智能技术的公司,以其开发的高性能目标检测模型YOLO(You Only Look Once)而闻名。YOLO模型以其快速和准确的目标检测能力在业界获得了广泛认可,特别是在需要实时处理的场合,如视频监控、自动驾驶和工业自动化等领域。
- Ultraalytics的YOLO算法通过单次前向传播即可预测图像中的物体位置和类别,与传统的多步骤检测方法相比,大大提高了检测速度。随着YOLO算法的迭代发展,Ultraalytics不断推出新版本,如YOLOv3、YOLOv4、YOLOv5等,每个版本都在准确性、速度和易用性方面进行了优化。
- 除了目标检测,Ultraalytics还提供其他AI解决方案,包括图像分割、数据标注工具和模型部署服务。公司致力于推动AI技术的创新和应用,帮助企业实现智能化转型。Ultraalytics的技术和产品因其高效性和可靠性,在全球范围内拥有众多用户和合作伙伴。
1.3 模块介绍
1.3.1 scan_task
- 构建了执行的任务,用于为
scan_taskflow
提供可执行对象
1.3.2 scan_taskflow.py
- 基于open-cv2的本地界面系统
1.3.3 target_dec_app.py
- gradio页面代码
二、核心代码介绍篇
2.1 target_dec_app.py
import cv2
import gradio as gr
from scan_task import ScanTargetDec
scan_model = ScanTargetDec(version='YOLOv8n', use_gpu=False)
def target_scan(frame):
frame, _ = scan_model.run(frame, text_size=50)
'''run方法其他可传参数
text_color: 显示文字颜色 默认:(0, 0, 255)
text_size: 显示文字大小 默认:20
y_pos: y轴位置偏移量 默认:0
'''
return frame
if __name__ == '__main__':
examples = [
[cv2.imread('./examples/image_detection.jpg')]]
with gr.Blocks() as demo:
with gr.Tabs():
# 图片目标检测
with gr.Tab(label='图片目标检测') as tab1:
gr.Markdown(value="# 图片目标检测")
with gr.Row(variant="panel"):
with gr.Column():
img_input1 = gr.Image(label="上传图片输入", mirror_webcam=False)
with gr.Row(variant="panel"):
submit_bn1 = gr.Button(value='上传')
clear_bn1 = gr.ClearButton(value='清除')
img_out1 = gr.Image(label="目标检测输出", mirror_webcam=False)
# 添加演示用例
gr.Examples(label='上传示例图片', examples=examples, fn=target_scan,
inputs=[img_input1],
outputs=[img_out1],
cache_examples=False)
submit_bn1.click(fn=target_scan, inputs=img_input1, outputs=img_out1)
clear_bn1.add([img_input1, img_out1])
# 摄像头实时目标检测
with gr.Tab(label='摄像头实时目标检测') as tab3:
gr.Markdown(value="# 摄像头实时目标检测")
with gr.Column(variant='panel') as demo_scan:
with gr.Row(variant="panel"):
img_input3 = gr.Image(label="实时输入", sources=["webcam"],
mirror_webcam=False, streaming=True)
img_out3 = gr.Image(label="目标检测输出", sources=["webcam"],
mirror_webcam=False, streaming=True)
img_input3.stream(fn=target_scan, inputs=img_input3, outputs=img_out3)
demo.launch()
- 此段代码主要是用于生成前端页面,以及配置按钮点击事件触发时的回调函数
- 可配置参数包括:
use_gpu
、text_color
、text_size
、y_pos
use_gpu
: 是否使用gputext_color
:定位的二维码,显示文字颜色 默认:(0, 0, 255)text_size
:定位的二维码,显示文字大小 默认:20y_pos
:y轴位置偏移量 默认:0
2.2 scan_taskflow.py
class ScanTaskflow:
def __init__(self, task: str, video_index=0, win_name='Scan XXX', win_width=800, win_height=600, **kwargs):
..初始化摄像头扫描对象,设置窗口尺寸等属性..
def run(self, **kwargs):
..开启摄像头,进行检测任务..
if __name__ == '__main__':
# 启动默认的目标检测系统
scanTaskflow = ScanTaskflow(task='scan_target_dec',
version='YOLOv8n', use_gpu=True,
video_index=0, win_name='target_dec',
win_width=640, win_height=480)
scanTaskflow.run(text_color=(0, 255, 0), y_pos=0)
__init__
用于预加载项目所需模型run
是检测系统的核心方法,用于将视频的实时帧进行检测
三、结语
- 本项目提供了一个基于YOLO8算法的目标检测系统,它不仅易于部署和使用,而且具备高性能和高灵活性。我们相信,随着技术的不断进步和社区的积极参与,本项目将能够为更多用户提供价值,推动目标检测技术的发展。如果您在使用过程中遇到任何问题,欢迎在ModelScope创空间-基于YOLO8的目标检测系统上提出issue,我们会及时为您解答。
- 希望本项目能够成为您在目标检测领域的得力助手。如果您觉得本项目对您有帮助,请给项目点个star,并持续关注我的个人主页ModelBulider的个人主页
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:jacktools123@163.com进行投诉反馈,一经查实,立即删除!
标签:
相关文章
最新发布
- 【Python】selenium安装+Microsoft Edge驱动器下载配置流程
- Python 中自动打开网页并点击[自动化脚本],Selenium
- Anaconda基础使用
- 【Python】成功解决 TypeError: ‘<‘ not supported between instances of ‘str’ and ‘int’
- manim边学边做--三维的点和线
- CPython是最常用的Python解释器之一,也是Python官方实现。它是用C语言编写的,旨在提供一个高效且易于使用的Python解释器。
- Anaconda安装配置Jupyter(2024最新版)
- Python中读取Excel最快的几种方法!
- Python某城市美食商家爬虫数据可视化分析和推荐查询系统毕业设计论文开题报告
- 如何使用 Python 批量检测和转换 JSONL 文件编码为 UTF-8
点击排行
- 版本匹配指南:Numpy版本和Python版本的对应关系
- 版本匹配指南:PyTorch版本、torchvision 版本和Python版本的对应关系
- Python 可视化 web 神器:streamlit、Gradio、dash、nicegui;低代码 Python Web 框架:PyWebIO
- 相关性分析——Pearson相关系数+热力图(附data和Python完整代码)
- Anaconda版本和Python版本对应关系(持续更新...)
- Python与PyTorch的版本对应
- Windows上安装 Python 环境并配置环境变量 (超详细教程)
- Python pyinstaller打包exe最完整教程